【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:

平移表中帶陰影的方框,方框中三個數(shù)的和可能是(  )

A. 2018 B. 2019 C. 2040 D. 2049

【答案】D

【解析】

設(shè)中間數(shù)為x,則另外兩個數(shù)分別為x﹣1、x+1,進而可得出三個數(shù)之和為3x,令其分別等于四個選項中數(shù),解之即可得出x的值,由x為整數(shù)、x不能為第一列及第八列數(shù),即可確定x值.

設(shè)中間數(shù)為x,則另外兩個數(shù)分別為x﹣1、x+1,

∴三個數(shù)之和為(x﹣1)+x+(x+1)=3x.

根據(jù)題意得:3x=2019、3x=2018、3x=2040、3x=2049,

解得:x=673,x=672(舍去),x=680,x=683.

673=84×8+1,

2019不合題意,舍去;

680=85×8,

2040不合題意,舍去;

683=85×8+3,

∴三個數(shù)之和為2049.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,A(﹣4,0),B(0,2),連結(jié)AB并延長到C,連結(jié)CO,若△COB∽△CAO,則點C的坐標(biāo)為(
A.(1,
B.(
C.( ,2
D.( ,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;
(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可)
(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn)

求證:①E、F是線段BD的勾股分割點;
②△AMN的面積是△AEF面積的兩倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是(  )
A.圖象關(guān)于直線x=1對稱
B.函數(shù)y=ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c=0(a≠0)的兩個根
D.當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個定點坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).

(1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2 , 請在第三象限內(nèi)畫出△A2B2C2 , 并求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義三個有理數(shù)之間的新運算法則“⊕”:abc(|abc|+a+b+c),如:1⊕(﹣2)⊕3= [|1﹣(﹣2)﹣3|+1+(﹣2)+3]=l,在﹣2,﹣4,﹣5,0,2,5,6這7個數(shù)中,任意取三個數(shù)作為a,bc的值,進行“abc“運算,求在所有計算的結(jié)果中的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B、C三個點對應(yīng)的數(shù)分別是a、b、c,滿足|a+24|+|b+10|+(c﹣10)2=0;動點PA出發(fā),以每秒1個單位的速度向終點C移動,設(shè)移動時間為t秒.當(dāng)點P運動到B點時,點QA點出發(fā),以每秒3個單位的速度向C點運動,Q點到達C點后,再立即以同樣的速度返回,運動到終點A.在返回過程中,當(dāng)t=_____秒時,P、Q兩點之間的距離為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別為A(0,3),B(﹣3,5),C(﹣4,1).

①把△ABC向右平移2個單位得△A1B1C1 , 請畫出△A1B1C1 , 并寫出點A1的坐標(biāo);
②把△ABC繞原點O旋轉(zhuǎn)180°得到△A2B2C2 , 請畫出△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1 , 畫出△A1B1C1
②△A2B2C2與△ABC關(guān)于原點O成中心對稱,畫出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點M成中心對稱,請直接寫出對稱中心M點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案