【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率= | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近多少?(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)是多少?
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
【答案】
(1)
解答:∵摸到白球的頻率為(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,
∴當(dāng)n很大時,摸到白球的頻率將會接近0.6.
(2)
∵摸到白球的頻率為0.6,
∴假如你摸一次,你摸到白球的概率P(白球)=0.6.
(3)
盒子里黑、白兩種顏色的球各有40-24=16,40×0.6=24.
【解析】 計算出其平均值即可;概率接近于第一題得到的頻率;白球個數(shù)=球的總數(shù)×得到的白球的概率,讓球的總數(shù)減去白球的個數(shù)即為黑球的個數(shù).
【考點精析】解答此題的關(guān)鍵在于理解用頻率估計概率的相關(guān)知識,掌握在同樣條件下,做大量的重復(fù)試驗,利用一個隨機事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組的小明想測量教學(xué)樓前的一棵樹的高度.下午課外活動時他測得一根長為1m的竹竿的影長是0.8m.但當(dāng)他馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖).他先測得留在墻壁上的樹影高為1.2m,又測得地面的影長為2.6m,請你幫他算一下,下列哪個數(shù)字最接近樹高( )m.
A.3.04
B.4.45
C.4.75
D.3.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖圖案是用長度相同的火柴棒按一定規(guī)律拼搭而成,圖案①需8根火柴棒,圖案②需15根火柴棒,…,
(1)按此規(guī)律,圖案⑦需____根火柴棒;第n個圖案需____根火柴棒.
(2)用2018根火柴棒能按規(guī)律拼搭而成一個圖案?若能,說明是第幾個圖案:若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學(xué)的思路寫出證明過程;
(3)用文字敘述所證命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( ).
(A)周長相等的銳角三角形都全等; (B) 周長相等的直角三角形都全等;
(C)周長相等的鈍角三角形都全等; (D) 周長相等的等腰直角三角形都全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點A,O,B表示的數(shù)分別為6,0,-4,動點P從A出發(fā),以每秒6個單位的速度沿數(shù)軸向左勻速運動.
(1)當(dāng)點P到點A的距離與點P到點B的距離相等時,點P在數(shù)軸上表示的數(shù)是 ;
(2)另一動點R從B出發(fā),以每秒4個單位的速度沿數(shù)軸向左勻速運動,若點P、R同時出發(fā),問點P運動多少時間追上點R?
(3)若M為AP的中點,N為PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若發(fā)生變化,請你說明理由;若不變,請你畫出圖形,并求出線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2x﹣3與x軸交于A,B兩點,點A在點B的左側(cè).
(1)求A,B兩點的坐標(biāo)和此拋物線的對稱軸;
(2)設(shè)此拋物線的頂點為C,點D與點C關(guān)于x軸對稱,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過坐標(biāo)原點,且當(dāng)x<0時,y隨x的增大而減。
(1)求拋物線的解析式;
(2)結(jié)合圖象寫出,0<x<4時,直接寫出y的取值范圍;
(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.當(dāng)BC=1時,求出矩形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com