【題目】已知四邊形的內(nèi)接四邊形,直徑與對角線相交于點,作,與過點的直線相交于點,.

1)求證:的切線;

2)若平分,求證:;

3)在(2)的條件下,的中點,連接,若的半徑為,求的長.

【答案】(1)證明見解析(2)證明見解析(3)

【解析】

1)根據(jù)直徑所對的圓周角為90°,得到∠ADC=90°,根據(jù)直角三角形兩銳角互余得到∠DAC+DCA=90°,再根據(jù)同弧或等弧所對的圓周角相等,可得到∠FAD+DAC=90°,即可得出結(jié)論;

2)連接OD.根據(jù)圓周角定理和角平分線定義可得∠DOA=DOC,即可得出結(jié)論;

3)連接ODCFM,作EPADP.可求出AD=4,AFOM.根據(jù)三角形中位線定理得出OM=AF.證明△ODE≌△OCM,得到OE=OM.設OM=m,用m表示出OE,AE,AP,DP.通過證明△EAN∽△DPE,根據(jù)相似三角形對應邊成比例,求出m的值,從而求得AN,AE的值.在RtNAE中,由勾股定理即可得出結(jié)論.

1)∵AC為⊙O的直徑,

∴∠ADC=90°,

∴∠DAC+DCA=90°.

,

∴∠ABD=DCA

∵∠FAD=ABD,

∴∠FAD=DCA,

∴∠FAD+DAC=90°,

CAAF,

AF為⊙O的切線.

2)連接OD

,

∴∠ABD=AOD

,

∴∠DBC=DOC

BD平分∠ABC

∴∠ABD=DBC,

∴∠DOA=DOC,

DA=DC

3)連接ODCFM,作EPADP

AC為⊙O的直徑,

∴∠ADC=90°.

DA=DC

DOAC,

∴∠FAC=DOC=90°,AD=DC==4

∴∠DAC=DCA=45°,AFOM

AO=OC

OM=AF

∵∠ODE+DEO=90°,∠OCM+DEO=90°,

∴∠ODE=OCM

∵∠DOE=COMOD=OC,

∴△ODE≌△OCM

OE=OM

OM=m,

OE=m,,,

∵∠AED+AEN=135°,∠AED+ADE=135°,

∴∠AEN=ADE

∵∠EAN=DPE

∴△EAN∽△DPE,

,

,,

由勾股定理得:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+b與雙曲線分別相交于點A,B,C,D,已知點A的坐標為(-1,4),且ABCD=52,則m=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓D的直徑AB4,線段OA7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m

1)當半圓D與數(shù)軸相切時,m 

2)半圓D與數(shù)軸有兩個公共點,設另一個公共點是C

直接寫出m的取值范圍是 

BC2時,求△AOB與半圓D的公共部分的面積.

3)當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tanAOB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某倉儲中心有一個坡度為i12的斜坡AB,頂部A處的高AC4米,B、C在同一水平地面上,其橫截面如圖.

1)求該斜坡的坡面AB的長度;

2)現(xiàn)有一個側(cè)面圖為矩形DEFG的長方體貨柜,其中長DE2.5米,高EF2米,該貨柜沿斜坡向下時,點DBC所在水平面的高度不斷變化,求當BF3.5米時,點DBC所在水平面的高度DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點在直線上,,點邊的中點,連接,射線于點,則的值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運動.設點的運動路程為,的面積為,的函數(shù)關系圖象如圖②所示,則邊的長為( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點.

(1)求b的值;

(2)將二次函數(shù)y=2x2+bx+1的圖象進行一次平移,使圖象經(jīng)過原點.(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的是太原市某公園水上滑梯的側(cè)面圖,其中段可看成是雙曲線的一部分,其中,矩形中有一個向上攀爬的梯子,米,入口,且米,出口點距水面的距離米,則點之間的水平距離的長度為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案