【題目】如圖所示,在平面直角坐標(biāo)系中,矩形ABOC的邊BO在x軸的負(fù)半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)60°后得到矩形EFOD.點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)F,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)D,拋物線y=ax2+bx+c過點(diǎn)A,E,D.
(1)判斷點(diǎn)E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達(dá)式;
(3)在x軸的上方是否存在點(diǎn)P,點(diǎn)Q,使以點(diǎn)O,B,P,Q為頂點(diǎn)的平行四邊形的面積是矩形ABOC面積的2倍,且點(diǎn)P在拋物線上?若存在,請求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)在;(2);(3)當(dāng)點(diǎn)P1的坐標(biāo)為(0,2)時(shí),點(diǎn)Q的坐標(biāo)分別為Q1(-,2),Q2(,2);當(dāng)點(diǎn)P2的坐標(biāo)為(-,2)時(shí),點(diǎn)Q的坐標(biāo)分別為Q3(-,2),Q4(,2).
【解析】
(1)可連接OA,通過證∠AOE=60°,即與旋轉(zhuǎn)角相同來得出OE在y軸上的結(jié)論.
(2)已知了AB,OB的長即可求出A的坐標(biāo),在直角三角形OEF中,可用勾股定理求出OE的長,也就能求得E點(diǎn)的坐標(biāo),要想得出拋物線的解析式還少D點(diǎn)的坐標(biāo),可過D作x軸的垂線,通過構(gòu)建直角三角形,根據(jù)OD的長和∠DOx的正弦和余弦值來求出D的坐標(biāo).
求出A、E、D三點(diǎn)坐標(biāo)后即可用待定系數(shù)法求出拋物線的解析式.
(3)可先求出矩形的面積,進(jìn)而可得出平行四邊形OBPQ的面積.由于平行四邊形中OB邊的長是定值,因此可根據(jù)平行四邊形的面積求出P點(diǎn)的縱坐標(biāo)(由于P點(diǎn)在x軸上方,因此P的縱坐標(biāo)為正數(shù)),然后將P點(diǎn)的縱坐標(biāo)代入拋物線中可求出P點(diǎn)的坐標(biāo).求出P點(diǎn)的坐標(biāo)后,將P點(diǎn)分別向左、向右平移OB個(gè)單位即可得出Q點(diǎn)的坐標(biāo),由此可得出符合條件的兩個(gè)P點(diǎn)坐標(biāo)和四個(gè)Q點(diǎn)坐標(biāo).
(1)點(diǎn)E在y軸上
理由如下:
連接AO,如圖所示,在Rt△ABO中,∵AB=1,BO=,
∴AO=2∴sin∠AOB=,∴∠AOB=30°
由題意可知:∠AOE=60°∴∠BOE=∠AOB+∠AOE=30°+60°=90°
∵點(diǎn)B在x軸上,∴點(diǎn)E在y軸上.
(2)過點(diǎn)D作DM⊥x軸于點(diǎn)M,
∵OD=1,∠DOM=30°
∴在Rt△DOM中,DM=,OM=
∵點(diǎn)D在第一象限,
∴點(diǎn)D的坐標(biāo)為(,)
由(1)知EO=AO=2,點(diǎn)E在y軸的正半軸上
∴點(diǎn)E的坐標(biāo)為(0,2)
∴點(diǎn)A的坐標(biāo)為(-,1)
∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)E,
∴c=2
由題意,將A(-,1),D(,)代入y=ax2+bx+2中,
得
解得
∴所求拋物線表達(dá)式為:y=-x2-x+2
(3)存在符合條件的點(diǎn)P,點(diǎn)Q.
理由如下:∵矩形ABOC的面積=ABBO=
∴以O,B,P,Q為頂點(diǎn)的平行四邊形面積為2.
由題意可知OB為此平行四邊形一邊,
又∵OB=
∴OB邊上的高為2
依題意設(shè)點(diǎn)P的坐標(biāo)為(m,2)
∵點(diǎn)P在拋物線y=-x2-x+2上
∴-m2-m+2=2
解得,m1=0,m2=-
∴P1(0,2),P2(-,2)
∵以O,B,P,Q為頂點(diǎn)的四邊形是平行四邊形,
∴PQ∥OB,PQ=OB=,
∴當(dāng)點(diǎn)P1的坐標(biāo)為(0,2)時(shí),點(diǎn)Q的坐標(biāo)分別為Q1(-,2),Q2(,2);
當(dāng)點(diǎn)P2的坐標(biāo)為(-,2)時(shí),點(diǎn)Q的坐標(biāo)分別為Q3(-,2),Q4(,2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O為△ABC(∠A<∠ABC)的外接圓,且AB為的直徑,AB=8,點(diǎn)D為AB延長線上一點(diǎn),點(diǎn) E為半徑OB上一點(diǎn),連接CD、CE、OC,且∠BCD=∠A.
(1)求證:CD為的切線;
(2)若CB=CE,求證:CE2=CO2-OA·OE;
(3)在(2)的條件下,求OE+BC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.經(jīng)過點(diǎn)A,C的拋物線y=ax2+3ax﹣3與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.
(1)如圖1,求a的值;
(2)如圖2,點(diǎn)D,E分別在線段AC,AB上,且BE=2AD,連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)得到線段DF,且旋轉(zhuǎn)角∠EDF=∠OAC,連接CF,求tan∠ACF的值;
(3)如圖3,在(2)的條件下,當(dāng)∠DFC=135°時(shí),在線段AC的延長線上取點(diǎn)M,過點(diǎn)M作MN∥DE交拋物線于點(diǎn)N,連接DN,EM,若MN=DF,求點(diǎn)N的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.
填空:線段AD,BE之間的關(guān)系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.
(3)解決問題
如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(在A點(diǎn)左側(cè))是雙曲線上的動點(diǎn).過點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.
(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值.
(2)若B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式.
(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求p-q的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)C在x軸的負(fù)半軸上,點(diǎn)A在y軸正半軸上,矩形OABC的面積為8.把矩形OABC沿DE翻折,使點(diǎn)B與點(diǎn)O重合,點(diǎn)C落在第三象限的G點(diǎn)處,作EH⊥x軸于H,過E點(diǎn)的反比例函數(shù)y=圖象恰好過DE的中點(diǎn)F.則k=_____,線段EH的長為:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店購進(jìn)甲、乙兩種圖書共100本,甲、乙兩種圖書的進(jìn)價(jià)分別為每本15元、35元,甲、乙兩種圖書的售價(jià)分別為每本20元、45元.
(1)若書店購書恰好用了2300元,求購進(jìn)的甲、乙圖書各多少本?
(2)銷售時(shí),甲圖書打8.5折,乙圖書不打折.若甲、乙兩種圖書全部銷售完后共獲利,求購進(jìn)的甲、乙圖書各多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點(diǎn),于點(diǎn),與交于點(diǎn),于點(diǎn),點(diǎn)是的中點(diǎn),連接并延長交于點(diǎn).
(1)如圖①所示,若,求證:;
(2)如圖②所示,若,如圖③所示,若(點(diǎn)與點(diǎn)重合),猜想線段、與之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:a*b=,則下列等式中對于任意實(shí)數(shù) a、b、c 都成立的是( )
①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c
③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com