【題目】在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1: ,EF⊥CE,求EF:EG的值.

【答案】
(1)證明:如圖1,

在△ABC中,∵∠CAB=90°,AD⊥BC于點(diǎn)D,

∴∠CAD=∠B=90°﹣∠ACB.

∵AC:AB=1:2,

∴AB=2AC,

∵點(diǎn)E為AB的中點(diǎn),

∴AB=2BE,

∴AC=BE.

在△ACD與△BEF中,

,

∴△ACD≌△BEF,

∴CD=EF,即EF=CD


(2)解:如圖2,作EH⊥AD于H,EQ⊥BC于Q,

∵EH⊥AD,EQ⊥BC,AD⊥BC,

∴四邊形EQDH是矩形,

∴∠QEH=90°,

∴∠FEQ=∠GEH=90°﹣∠QEG,

又∵∠EQF=∠EHG=90°,

∴△EFQ∽△EGH,

∴EF:EG=EQ:EH.

∵AC:AB=1: ,∠CAB=90°,

∴∠B=30°.

在△BEQ中,∵∠BQE=90°,

∴sinB= =

∴EQ= BE.

在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,

∴cos∠AEH= =

∴EH= AE.

∵點(diǎn)E為AB的中點(diǎn),

∴BE=AE,

∴EF:EG=EQ:EH= BE: AE=1: = :3


【解析】(1)根據(jù)同角的余角相等得出∠CAD=∠B,根據(jù)AC:AB=1:2及點(diǎn)E為AB的中點(diǎn),得出AC=BE,再利用AAS證明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先證明四邊形EQDH是矩形,得出∠QEH=90°,則∠FEQ=∠GEH,再由兩角對應(yīng)相等的兩三角形相似證明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根據(jù)正弦函數(shù)的定義得出EQ= BE,在△AEH中,根據(jù)余弦函數(shù)的定義得出EH= AE,又BE=AE,進(jìn)而求出EF:EG的值.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的判定與性質(zhì),掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、AC是⊙O的兩條弦∠A=25°,過點(diǎn)C的切線與OB的延長線交于點(diǎn)D,則∠D的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩超市(大型商場)同時(shí)開業(yè),為了吸引顧客,都舉行有獎(jiǎng)酬賓活動:凡購物滿100元,均可得到一次摸獎(jiǎng)的機(jī)會.在一個(gè)紙盒里裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,摸獎(jiǎng)?wù)咭淮螐闹忻鰞蓚(gè)球,根據(jù)球的顏色決定送禮金券(在他們超市使用時(shí),與人民幣等值)的多少.(如下表) 甲超市:

兩紅

一紅一白

兩白

禮金券(元)

5

10

5

乙超市:

兩紅

一紅一白

兩白

禮金券(元)

10

5

10


(1)用樹狀圖表示得到一次摸獎(jiǎng)機(jī)會時(shí)中禮金券的所有情況;
(2)如果只考慮中獎(jiǎng)因素,你將會選擇去哪個(gè)超市購物?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ACB△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)DAB邊上的一點(diǎn),若AB=17,BD=12,

1)求證:△BCD≌△ACE

2)求DE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ADB△ADC中,下列條件:①BDDC,ABAC②∠B∠C,∠BAD∠CAD;③∠B∠C,BDDC;④∠ADB∠ADC,BDDC.能得出△ADB≌△ADC的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知

(1)在圖中,用尺規(guī)作出 的內(nèi)切圓 ,并標(biāo)出 與邊 , 的切點(diǎn) , , (保留痕跡,不必寫作法);
(2)連接 , ,求 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi)已點(diǎn)A3,0)、B(-53),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________

2)把這些點(diǎn)按ABCDA順次連接起來,這個(gè)圖形的面積是__________

查看答案和解析>>

同步練習(xí)冊答案