【題目】如圖,AB是半徑為4⊙O的直徑,P是圓上異于A,B的任意一點(diǎn),∠APB的平分線交⊙O于點(diǎn) C,連接ACBC,△ABC的中位線所在的直線與⊙O相交于點(diǎn)E、F,則EF的長(zhǎng)是________

【答案】4

【解析】

連接OCEF于點(diǎn)D,連接OE,由圓心角定理和圓周角定理易得CO⊥AB,再由中位線定理可得CD=DO,OC⊥EF,則由垂徑定理可得EF=2ED. RT△EDO中運(yùn)用勾股定理即可求解

連接OCEF于點(diǎn)D,連接OE,

PC∠APB的平分線,由圓心角定理可知=,進(jìn)而可得∠AOC=∠BOC=90°,由題干條件EF△ABC的中位線所在的直線,根據(jù)中位線定理可得EF∥AB,則可得∠ODE=∠AOC=90°,OD=OC=2.同時(shí)由垂徑定理可得EF=2ED,RT△EDO中運(yùn)用勾股定理:OD2+ED2=OE2,ED=EF=2ED=4.

故答案為:4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級(jí)的哥哥想了一個(gè)辦法,他拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小麗,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小利哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張撲克牌上的數(shù)字相加,如果和為偶數(shù),和小麗去;如果和為奇數(shù),則哥哥去.

(1)請(qǐng)用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;

(2)哥哥設(shè)計(jì)的游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).

(1)求A,B兩點(diǎn)的坐標(biāo)和此拋物線的對(duì)稱軸;

(2)設(shè)此拋物線的頂點(diǎn)為C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求四邊形ACBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形和四邊形是兩個(gè)全等的矩形,其中、交于點(diǎn)、交于點(diǎn)

(1)判斷四邊形的形狀、并說明理由.

(2)若矩形的長(zhǎng)是,寬是,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

在綜合實(shí)踐課上,張老師讓同學(xué)們以“矩形的折疊”為主題開展數(shù)學(xué)活動(dòng),張老師拿著一張矩形紙片ABCD,其中AB=acm, AD=bcm, 如圖1,先沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E的位置,BEAD于點(diǎn)F.

操作發(fā)現(xiàn):

(1)“奮進(jìn)”小組發(fā)現(xiàn)與BF的長(zhǎng)度一定相等的線段是哪一條;

(2)如圖2.“雄鷹”小組將圖1再折疊一次,使點(diǎn)D與點(diǎn)A重合,得到折痕GH,GHAD于點(diǎn)M,發(fā)現(xiàn)△DGH是等腰三角形,請(qǐng)你證明這個(gè)結(jié)論;

實(shí)踐探究:

(3)“創(chuàng)新”小組將自己準(zhǔn)備的矩形紙片按照(2)中“雄鷹”小組的作法操作,發(fā)現(xiàn)點(diǎn)E和點(diǎn)G重合,,如圖3,試探究“創(chuàng)新”小組準(zhǔn)備的矩形紙片中ab滿足的數(shù)量關(guān)系;

(4)”愛心小組在其他小組的基礎(chǔ)上提出問題:當(dāng)ab滿足什么關(guān)系時(shí),點(diǎn)GDE的中點(diǎn)?請(qǐng)你直接出ab滿足的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),,y關(guān)于x的函數(shù)的圖像大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);

(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);

(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

當(dāng)t為   秒時(shí),PAD的周長(zhǎng)最?當(dāng)t為   秒時(shí),PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))

點(diǎn)P在運(yùn)動(dòng)過程中,是否存在一點(diǎn)P,使PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DMAC于點(diǎn)N

1)如圖1,當(dāng)點(diǎn)MAB邊上時(shí),連接BN

試說明:;

∠ABC=60°,AM=4,求點(diǎn)MAD的距離.

2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向10(1+)海里的C處,為了防止某國(guó)海巡警干擾,請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航.如圖,已知C位于A處的東北方向上,A位于B的北偏西30°方向上,則AC之間的距離為( 。

A. 10海里 B. 20海里 C. 20海里 D. 10海里

查看答案和解析>>

同步練習(xí)冊(cè)答案