【題目】如圖,在中,BC=1,.
(1)求AB的長度:
(2)過點A作AB的垂線,交AC的垂直平分線于點D ,以AB為一邊作等邊.
①連接CE,求證: BD=CE;
②連接DE交AB于F.求的值.
【答案】(1) AB=2; (2)①見解析;②
【解析】
(1)由含30°角的直角三角形性質,得到AB=2BC=2即可;
(2)①連接CD,先證明△ACD是等邊三角形,則DA=AC,由∠EAC=∠DAB=90°,AE=AB,即可得到,然后得到BD=CE;
②作EH⊥AB于H ,由,得到,則得到,可證,然后得到EF=DF,即可得到答案.
(1)解:∵在中,∠BAC=30°,
∴AB=2BC=2;
(2)①證明:連接 CD,
為等邊三角形,
∴AB=AE,∠EAB = 60°,
∵∠BAC=30°,AB⊥AD,
∴∠DAC=60°,
∴∠EAC=∠DAB,
又∵ DC=DA,
∴△ADC為等邊三角形,
.
在與中,
,
∴BD=CE;
②解:作EH⊥AB于H .
∵,
∴,
∵,
∴,
在與中,
,
.
又 ,
在與中,
,
, .
,
.
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋里裝有分別標有漢字“書”、“ 香”、“ 歷”、“ 城”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻.
(1)若從中任取一個球,球上的漢字剛好是 “書”的概率為__________.
(2)從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表的方法,求取出的兩個球上的漢字能組成“歷城”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=,CB的反向延長線上有一動點D,以AD為邊在右側作等邊三角形,連CE,CE最短長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,AB=AC=+2,D是邊AC上的動點,BD的垂直平分線交BC于點E,連接DE,若△CDE為直角三角形,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明用大小相同高度為2cm的10塊小長方體壘了兩堵與地面垂直的木墻AD, BE,當他將一個等腰直角三角板ABC如圖垂直放入時,直角頂點C正好在水平線DE上,銳角頂點A和B分別與木墻的頂端重合,求兩堵木墻之間的距離。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD=BC=13,點E為射線AD上的一個動點,若△ABE與△A'BE關于直線BE對稱,當△A'BC為直角三角形時,AE的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重慶市的重大惠民工程﹣﹣公租房建設已陸續(xù)竣工,計劃10年內解決低收入人群的住房問題,前6年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時間x的關系是y=x+5,(x單位:年,1≤x≤6且x為整數(shù));后4年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時間x的關系是y=-x+(x單位:年,7≤x≤10且x為整數(shù)).假設每年的公租房全部出租完.另外,隨著物價上漲等因素的影響,每年的租金也隨之上調,預計,第x年投入使用的公租房的租金z(單位:元/m2)與時間x(單位:年,1≤x≤10且x為整數(shù))滿足一次函數(shù)關系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z與x的函數(shù)關系式;
(2)求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬元;
(3)若第6年竣工投入使用的公租房可解決20萬人的住房問題,政府計劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高a%,這樣可解決住房的人數(shù)將比第6年減少1.35a%,求a的值.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號,立即出發(fā),沿北偏東67°方向航行10海里到達小島C處,將人員撤離到位于碼頭A正東方向的碼頭B,測得小島C位于碼頭B的北偏西53°方向,求碼頭A與碼頭B的距離.【參考數(shù)據(jù):sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com