【題目】如圖,在中,,平分,交于點(diǎn),交的延長(zhǎng)線于點(diǎn),于點(diǎn)

1)求證:四邊形為菱形;

2)若,,求的長(zhǎng).

【答案】(1)詳見解析;(2)

【解析】

1)先證出四邊形AEGD是平行四邊形,再由平行線的性質(zhì)和角平分線證出∠ADE=AED,得出AD=AE,即可得出結(jié)論;
2)連接AGDFH,由菱形的性質(zhì)得出AD=DG,AGDE,證出ADG是等邊三角形,AG=AD=2,得出∠ADH=30°,,由直角三角形的性質(zhì)得出,得出,證出DG=BE,由平行線的性質(zhì)得出∠EDG=FEB,∠DGE=C=EBF,證明DGE≌△EBF得出DE=EF,即可得出結(jié)果.

1)證明:四邊形是平行四邊形,

,

,

,

四邊形是平行四邊形,

平分

,

,

四邊形為菱形;

2)解:連接,如圖所示:

四邊形為菱形,

,

是等邊三角形,,

,

,

,,,

,

中,,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上線段AB=2(單位長(zhǎng)度),線段CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是-10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)當(dāng)點(diǎn)B與點(diǎn)C相遇時(shí),點(diǎn)A、點(diǎn)D在數(shù)軸上表示的數(shù)分別為________;

(2)當(dāng)t為何值時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合;

(3)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),求出此時(shí)點(diǎn)B在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,D是邊BC上一點(diǎn),點(diǎn)E、F分別是線段AB、AD中點(diǎn),聯(lián)結(jié)CECF、EF

1)求證:△CEF≌△AEF;

2)聯(lián)結(jié)DE,當(dāng)BD2CD時(shí),求證:AD2DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種關(guān)于整數(shù)n“F”運(yùn)算:

1)當(dāng)n是奇數(shù)時(shí),結(jié)果為

2)當(dāng)n是偶數(shù)時(shí),結(jié)果是(其中是使是奇數(shù)的正整數(shù)),并且運(yùn)算重復(fù)進(jìn)行.

例如:取,第一次經(jīng)F運(yùn)算是29,第二次經(jīng)F運(yùn)算是92,第三次經(jīng)F運(yùn)算是23,第四次經(jīng)F運(yùn)算是74…;若,則第2019次運(yùn)算結(jié)果是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示AB為⊙O的一條弦,點(diǎn)C為劣弧AB的中點(diǎn),E為優(yōu)弧AB上一點(diǎn),點(diǎn)FAE的延長(zhǎng)線上,且BE=EF,線段CE交弦AB于點(diǎn)D.

(1)求證:CEBF;

(2)BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據(jù)圓的對(duì)稱性可知OCAB).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊三角形(三條邊都相等的三角形是等邊三角形)紙板ABC在數(shù)軸上的位置如圖所示,點(diǎn)A,B對(duì)應(yīng)的數(shù)分別為0-1,若⊿ABC繞著頂點(diǎn)順時(shí)針方向在數(shù)軸上連續(xù)翻轉(zhuǎn),翻轉(zhuǎn)第1次后,點(diǎn)C所對(duì)應(yīng)的數(shù)為1,則翻轉(zhuǎn)2020次后,點(diǎn)C所對(duì)應(yīng)的數(shù)是(

A.2017B.2018C.2019D.2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間x (時(shí))的關(guān)系可近似地用二次函數(shù)y=-200x2+400x刻畫;1.5時(shí)后(包括1.5時(shí))yx可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少

(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于酒后駕駛,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說明理由.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一條直線上有A、B、C、D、四點(diǎn)(A、B、C三點(diǎn)依次從左到右排列),已知AD=AB,AC=4CB,且CD=10cm,求AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB=6BC=8,點(diǎn)O在對(duì)角線AC上,且OA=OB=OC,點(diǎn)P是邊CD上的一個(gè)動(dòng)點(diǎn),連接OP,過點(diǎn)OOQOP,交BC于點(diǎn)Q.

1)求OB的長(zhǎng)度;

2)設(shè)DP= x,CQ= y,求yx的函數(shù)表達(dá)式(不要求寫自變量的取值范圍);

3)若OCQ是等腰三角形,求CQ的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案