【題目】已知一次函數(shù)yax+|a-1|的圖象經(jīng)過點(diǎn)(0,2),且函數(shù)y的值隨x的增大而減小,則a的值為________

【答案】-1

【解析】先根據(jù)一次函數(shù)y=ax+|a-1|的圖象過點(diǎn)(0,2)得出a的值,再由yx的增大而減小判斷出a的符號(hào),進(jìn)而可得出結(jié)論.

∵一次函數(shù)y=ax+|a-1|的圖象過點(diǎn)(0,2),

|a-1|=2,

解得:a=3-1,

yx的增大而減小,

a<0,

a=-1,

故答案為:-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一組數(shù)據(jù):3,3,5,6,7.這組數(shù)據(jù)的眾數(shù)為( 。

A. 3 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC≌△DEF,且△ABC的周長(zhǎng)為12 cm,面積為6 cm2,則△DEF的周長(zhǎng)為____cm,面積為_____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)(3+mn2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)是(3,2),則m,n的值為( 。

A. m=﹣6,n=﹣4 B. m0n4 C. m=﹣6,n4 D. m=﹣6,n0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,拋物線y=x2+bx+c與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)B(0,4).

(1)求拋物線的函數(shù)解析式;

(2)在x軸上有一點(diǎn)P,點(diǎn)P在直線AB的垂線段為PC,C為垂足,且PC=,求點(diǎn)P的坐標(biāo);

(3)如圖(2),在(2)的條件下,將原拋物線向左平移,使平移后的拋物線過原點(diǎn),與原拋物線交于點(diǎn)D,在平移后的拋物線上是否存在點(diǎn)E,使S△APE=S△ACD?若存在,請(qǐng)求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校的科技節(jié)比賽設(shè)置了如下項(xiàng)目:A—船模;B—航模;C—汽模.右圖為該校參加科技比賽的學(xué)生人數(shù)統(tǒng)計(jì)圖.

(1)該校報(bào)名參加B項(xiàng)目學(xué)生人數(shù)是 人;

(2)該校報(bào)名參加C項(xiàng)目學(xué)生人數(shù)所在扇形的圓心角的度數(shù)是 °;

(3)為確定參加區(qū)科技節(jié)的學(xué)生人選,該校在集訓(xùn)后進(jìn)行了校內(nèi)選拔賽,最后一輪復(fù)賽,決定在甲、乙2名候選人中選出1人代表學(xué)校參加區(qū)科技節(jié)B項(xiàng)目的比賽,每人進(jìn)行了4次試飛,對(duì)照一定的標(biāo)準(zhǔn),判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教練,你打算安排誰代表學(xué)校參賽?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方形的長(zhǎng)為90cm,寬為40cm,求與這個(gè)長(zhǎng)方形面積相等的正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店以4元/千克的價(jià)格購(gòu)進(jìn)一批水果,由于銷售狀況良好,該店又再次購(gòu)進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購(gòu)水果重量恰好是第一次購(gòu)進(jìn)水果重量的2倍,這樣該水果店兩次購(gòu)進(jìn)水果共花去了2200元.

(1)該水果店兩次分別購(gòu)買了多少元的水果?

(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購(gòu)進(jìn)的水果有3%的損耗,第二次購(gòu)進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程mx2+x+1=0,試按要求解答下列問題:
(1)當(dāng)該方程有一根為1時(shí),試確定m的值;
(2)當(dāng)該方程有兩個(gè)不相等的實(shí)數(shù)根時(shí),試確定m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案