【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點E,過AAF垂直BE于點F,過CCG垂直BE于點G,在FA上截取FH=FB,再過HHP垂直AFABP.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ 

【答案】9.

【解析】

試題由ABCD為正方形,根據(jù)正方形的性質(zhì)得到AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,又根據(jù)CGBE垂直得到∠BCG+∠CBG=90°,根據(jù)同角的余角相等得到一對角相等,又根據(jù)一對直角相等,利用“AAS”即可得到三角形BCG與三角形FBA全等,根據(jù)全等三角形的對應(yīng)邊相等得到AFBG相等,又因為FH=FB,從而得到AH=FG,然后由垂直得到一對直角相等,加上一個公共角,得到三角形APH與三角形ABF相似,根據(jù)相似得比例,設(shè)AH=FG=x,用x表示出PH,由四邊形PHFB一組對邊平行,另一組對邊不平行得到此四邊形為梯形,根據(jù)梯形的面積公式,由上底PH,下底為BF=3,高FH=3,表示出梯形的面積;然后在三角形BCG與三角形ECG中,根據(jù)同角的余角相等,再加上一對直角得到兩三角形相似,根據(jù)相似得比例,用含x的式子表示出GE,由CG=3,利用表示出的GE,利用三角形的面積公式表示出直角三角形CGE的面積,把表示出的兩面積相加,化簡即可得到值.

試題解析:四邊形ABCD為正方形,

∴AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°

CG⊥BE,即∠BGC=90°,

∴∠BCG+∠CBG=90°,

∴∠ABF=∠BCG

AF⊥BG,

∴∠AFB=∠BGC=90°,

∴△ABF≌△BCG,

∴AF=BG,BF=CG=FH=3,

∵FH=BF,

∴AH=FG,設(shè)AH=FG=x

∵PH⊥AF,BF⊥AF,

∴∠AHP=∠AFB=90°,又∠PAH為公共角,

∴△APH∽△ABF,

,即PH=,

∵FH∥BF,BP不平行FH

四邊形BFHP為梯形,其面積為;

∵∠BCG+∠ECG=90°∠ECG+∠BEC=90°,

∴∠BCG=∠BEC,又∠BGC=∠CGE=90°

∴△BCG∽△CEG,

,即GE=

Rt△CGE的面積為×3×,

△CGE與四邊形BFHP的面積之和為

考點: 1.正方形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBCCDDA=2231,且∠ABC=90°,則∠DAB的度數(shù)是______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,且,滿足,點上一個動點(不與,)重合),連接.

1 2

1)直接寫出 ___________,___________

2)如圖1,過點的垂線交過點平行于軸的直線于點,若點,

求點的坐標;

3)如圖2,以為斜邊在右側(cè)作等腰.連接,當點運動過程中,的面積是否發(fā)生變化,請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.

1)求甲、乙兩人每天各加工多少個這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨加工一段時間后另有安排,剩余任務(wù)由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計概率的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是( �。�

A. 石頭、剪刀、布的游戲中,小明隨機出的是剪刀

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4

C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃

D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.

(1)求m,k的值;

(2)如果M為x軸上一點,N為y軸上一點, 以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,點E是邊AD上動點,點F是邊BC上動點,連接EF,把矩形ABCD沿直線EF折疊,點B恰好落在邊AD上,記為點G;如圖2,把矩形展開鋪平,連接BE,FG.

1)判斷四邊形BEGF的形狀一定是   ,請證明你的結(jié)論;

2)若矩形邊AB4,BC8,直接寫出四邊形BEGF面積的最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形在平面直角坐標系中的位置如圖所示,,AC=4,把平行四邊形繞點逆時針方向旋轉(zhuǎn),使點落在軸上,則旋轉(zhuǎn)后點的對應(yīng)點的坐標為________

查看答案和解析>>

同步練習(xí)冊答案