【題目】某產(chǎn)品的標(biāo)志圖案如圖(1)所示,要在所給的圖3-122(2)中,把A,B,C三個菱形通過一種或幾種變換,使之變?yōu)榕c圖(1)一樣的圖案.

(1)請你在圖3-122(2)中作出變換后的圖案;(最終圖案用實線)

(2)你所用的變換方法是_________.(填序號)

①將菱形B向上平移;②將菱形B繞點O順時針旋轉(zhuǎn)120°;③將菱形B繞點O旋轉(zhuǎn)180

【答案】①或③

【解析】試題分析:首先分析①②的不同,變化前后,AC的位置不變,只有B的位置由O的下方變?yōu)?/span>O的上方,據(jù)此即可作出判斷.

試題解析:解:(1)觀察分析①②的不同,變化前后,AC的位置不變,而B的位置由O的下方變?yōu)?/span>O的上方,進而可得兩者對應(yīng)點的連線交于點O,即進行了中心對稱變化,變換方法是將菱形B繞點O旋轉(zhuǎn)180°,可作圖得:

2)變換方法是將菱形B繞點O旋轉(zhuǎn)180°,即

也可以將菱形B往上平移得到結(jié)論,即①

故答案為:①或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀求絕對值不等式|x|<3|x|>3的解集的過程:

因為|x|<3,從如圖1所示的數(shù)軸上看:大于-3而小于3的數(shù)的絕對值是小于3的,所以|x|<3的解集是-3<x<3;

因為|x|>3,從如圖2所示的數(shù)軸上看:小大于-3的數(shù)和大于3的數(shù)的絕對值是大于3的,所以|x|>3的解集是x<-3x>3.

解答下面的問題:

(1)不等式|x|<a(a>0)的解集為______;不等式|x|>a(a>0)的解集為______.

(2)解不等式|x-5|<3;

(3)解不等式|x-3|>5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在今年“六一”期間,揚州市某中學(xué)計劃組織初一學(xué)生到上海研學(xué),如果租用甲種客車2輛,乙種客車3輛,則可載180人,如果租用甲種客車3輛,乙種客車1輛,則可載165人.

(1)請問甲、乙兩種客車每輛分別能載客多少人?

(2)若該學(xué)校初一年級參加研學(xué)活動的師生共有303名,旅行社承諾每輛車安排一名導(dǎo)游,導(dǎo)游也需一個座位.旅行前,旅行社的一名導(dǎo)游由于有特殊情況,旅行社只能安排7名導(dǎo)游,為保證所租的每輛車均有一名導(dǎo)游,租車方案調(diào)整為:同時租65座、甲種客車和乙種客車的大小三種客車,出發(fā)時,所租的三種客車的座位恰好坐滿,請問旅行社的租車方案應(yīng)如何安排?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中, ,點DBC所在的直線上,點E在射線AC上,且,連接DE

(1)如圖①,若, ,求的度數(shù);

(2)如圖②,若, ,求的度數(shù);

(3)當(dāng)點D在直線BC上(不與點B、C重合)運動時,試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且A(0,3)、B(﹣4,0).

(1)求經(jīng)過點C的反比例函數(shù)的解析式;
(2)設(shè)P是(1)中所求函數(shù)圖象上一點,以P、O、A頂點的三角形的面積與△COD的面積相等.求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求下列各式中的x

1x30.0270

2)(x229

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程4x2x+8)的解是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫坐標(biāo)分別為整數(shù)的點,其順序按HUI圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根據(jù)這個規(guī)律,第2018個點的坐標(biāo)為___________

查看答案和解析>>

同步練習(xí)冊答案