【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)請(qǐng)按下列要求畫圖:
①將△ABC先向右平移5個(gè)單位,再向上平移1個(gè)單位,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫出△A2B2C2;
(2)若(1)所得的△A1B1C1與△A2B2C2,關(guān)于點(diǎn)P成中心對(duì)稱,直接寫出對(duì)稱中心P點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,對(duì)稱軸為直線x=1,圖象經(jīng)過(guò)(3,0),下列結(jié)論中,正確的一項(xiàng)是( )
A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b2<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線C1:y=ax2+bx+c(a>0)與x軸交于點(diǎn)(﹣1,0),(2,0).
(1)b、c分別用含a的式子表示為:b= ,c= ;
(2)將拋物線C1向左平移個(gè)單位,得到拋物線C2.直線y=kx+a(k>0)與C2交于A,B兩點(diǎn)(A在B左側(cè)).P是拋物線C2上一點(diǎn),且在直線AB下方.作PE∥y軸交線段AB于E,過(guò)A、B兩點(diǎn)分別作PE的垂線AM、BN,垂足分別為M,N.
①當(dāng)P點(diǎn)在y軸上時(shí),試說(shuō)明:AMBN為定值.
②已知當(dāng)點(diǎn)P(a,n)時(shí),恰有S△ABM=S△ABN,求當(dāng)1≤a≤3時(shí),k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標(biāo)系中,拋物線可以用函數(shù)y=ax2+bx來(lái)表示,已知OA=8米,距離O點(diǎn)2米處的棚高BC為米.
(1)求該拋物線的解析式;
(2)若借助橫梁DE(DE∥OA)建一個(gè)門,要求門的高度為1.5米,求橫梁DE的長(zhǎng)度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面長(zhǎng)的墻,用長(zhǎng)的籬笆,圍成一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng).
(1)怎樣圍成一個(gè)面積為的長(zhǎng)方形養(yǎng)雞場(chǎng)?
(2)能否圍成一個(gè)面積為的長(zhǎng)方形養(yǎng)雞場(chǎng)?如能,說(shuō)明圍法;如不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題背景)如圖1,在四邊形ADBC中,∠ACB=∠ADB=90o,AD=BD, 探究線段AC,BC,CD之間的數(shù)量關(guān)系
小明同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90o到△AED處,點(diǎn)B,C分別 落在點(diǎn)A,E處(如圖2),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC= CD
(簡(jiǎn)單應(yīng)用)
(1)在圖1中,若AC=6,CD=,則AB= .
(2)如圖3,AB是⊙O的直徑,點(diǎn)C.D在⊙O上,∠C=45o,若AB=25,BC=24,求CD的長(zhǎng).
(拓展延伸)
(3)如圖4,∠ACB=∠ADB=90o,AD=BD,若AC=,CD=,求BC的長(zhǎng).(用含,的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊形狀如圖的五邊形余料,,,,,.要在這塊余料中截取一塊矩形材料,其中一邊在上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,P是AD的中點(diǎn),連BP,過(guò)A作BP的垂線,垂足為F,交BD于E,交CD于G.
(1)若矩形ABCD是正方形,如圖1,
①求證:AG=BP.
②的值為 .
(2)類比:如圖2,在矩形ABCD中,若2AB=3AD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
A. 1 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com