【題目】如圖,ABC為等腰三角形,AB=AC,∠D=∠E,∠BAD=∠CAE.

(1)寫出一對全等的三角形:   ≌△   ;

(2)證明(1)中的結論;

(3)求證:點G為BC的中點.

【答案】(1)△ABE≌△ACD.(2)詳見解析.(3)詳見解析.

【解析】

(1)結論:△ABE≌△ACD.(2)根據(jù)AAS即可證明;(3)只要證明FB=FC,可得AF垂直平分線段BC即可解決問題;

(1)解:結論:△ABE≌△ACD.

(2)證明:∵∠BAD=∠CAE,

∴∠BAE=∠CAD,

ABE和ACD中,

,

∴△ABE≌△ACD.

故答案為ABE,ACD.

(3)證明:∵AB=AC,

∴∠ABC=∠ACB,

∵△ABE≌△ACD,

∴∠ABE=∠ACD,

∴∠FBC=∠FCB,

∴BF=CF,∵AB=AC,

AF垂直平分線段BC,

∴BG=GC,

點G為BC的中點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學們進行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設,當有三個不同的度數(shù)時,請你探索的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣(2k+1)x+k2+k(k>0)

(1)當k= 時,求這個二次函數(shù)的頂點坐標;
(2)求證:關于x的一元次方程x2﹣(2k+1)x+k2+k=0有兩個不相等的實數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(A點在B點的左側),與y軸交于C點,P是y軸負半軸上一點,且OP=1,直線AP交BC于點Q,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,小明提出這樣一個問題:∠B=∠C=90°,E是BC的中點,DE平分ADC,如圖.大家一起熱烈地討論交流,小英第一個得出如下結論:(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.其中正確的結論是_____.(將你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在同一直角坐標系中,函數(shù)y= 與y=kx+k2的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:關于三角函數(shù)還有如下的公式:
sin(α±β)=sinαcosβ±cosαsinβ
tan(α±β)=
利用這些公式可以將一些不是特殊角的三角函數(shù)轉化為特殊角的三角函數(shù)來求值.
例:tan75°=tan(45°+30°)= = =2+
根據(jù)以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}

(1)計算:sin15°;
(2)某校在開展愛國主義教育活動中,來到烈士紀念碑前緬懷和紀念為國捐軀的紅軍戰(zhàn)士.李三同學想用所學知識來測量如圖紀念碑的高度.已知李三站在離紀念碑底7米的C處,在D點測得紀念碑碑頂?shù)难鼋菫?5°,DC為 米,請你幫助李三求出紀念碑的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD繞點B逆時針旋轉30°后得到矩形A1BC1D1 , C1D1與AD交于點M,延長DA交A1D1于F,若AB=1,BC= ,則AF的長度為(

A.2﹣
B.
C.
D. ﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形是半高三角形,且斜邊,則它的周長等于_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐵路上、兩點相距25km,為良村莊,,,已知,,現(xiàn)在要在鐵路上修建一個土特產(chǎn)收購站

(1)在圖中,若,則戰(zhàn)應修建在離站多少千米處.

(2)在圖中,若值最小,則點應建在哪里,請求出這個最小值.

查看答案和解析>>

同步練習冊答案