【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)和點(diǎn)

(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

(2)點(diǎn)是拋物線上、之間的一點(diǎn),過點(diǎn)軸于點(diǎn)軸,交拋物線于點(diǎn),過點(diǎn)軸于點(diǎn),當(dāng)矩形的周長最大時,求點(diǎn)的橫坐標(biāo);

(3)如圖2,連接、,點(diǎn)在線段(不與重合),作交線段于點(diǎn),是否存在這樣點(diǎn),使得為等腰三角形?若存在,求出的長;若不存在,請說明理由.

【答案】(1);;(2)點(diǎn)的橫坐標(biāo)為(3)AN=1.

【解析】

(1)根據(jù)和點(diǎn)可得拋物線的表達(dá)式為,可知對稱軸為x=-2,代入解析式即可得出頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn),則,,可得矩形的周長,即可求解;(3)D為頂點(diǎn),A、B為拋物線與x軸的交點(diǎn)可得AD=BD,即可證明∠DAB=DBA,根據(jù),利用角的和差關(guān)系可得,即可證明,可得;分、、,三種情況分別求解即可.

(1)∵拋物線經(jīng)過點(diǎn)和點(diǎn)

∴拋物線的表達(dá)式為:

∴對稱軸為:x==-2,

x=-2代入得:y=4

∴頂點(diǎn).

(2)設(shè)點(diǎn),

,,

矩形的周長,

∴當(dāng)時,矩形周長最大,此時,點(diǎn)的橫坐標(biāo)為.

(3)∵點(diǎn)D為拋物線頂點(diǎn),A、B為拋物線與x軸的交點(diǎn),

AD=BD,

∴∠DAB=DBA,

,

,

,

D-24),A-5,0),B1,0

,,

①當(dāng)時,

∵∠NAM=MBD,∠NMA=MBD,

,

=AB-AM=1;

②當(dāng)時,則,

∵∠DMN=DBA

∴∠NDM=DBA,

∵∠DAB是公共角,

,

,

,即:

,即,

;

③當(dāng)時,

,而,

,

;

綜上所述:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】曉東在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:

如:解方程.

解:原方程可變形,得

.

,

,

直接開平方并整理,得,.

我們稱曉東這種解法為“平均數(shù)法”.

(1)下面是曉東用“平均數(shù)法”解方程時寫的解題過程.

.

.

直接開平方并整理,得,.

上述過程中的“□”,“○”,“☆”,“¤”表示的數(shù)分別為________,________,________,________.

(2)請用“平均數(shù)法”解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于、兩點(diǎn),,交軸于點(diǎn),對稱軸是直線

(1)求拋物線的解析式及點(diǎn)的坐標(biāo);

(2)連接,是線段上一點(diǎn),關(guān)于直線的對稱點(diǎn)正好落在上,求點(diǎn)的坐標(biāo);

(3)動點(diǎn)從點(diǎn)出發(fā),以每秒2個單位長度的速度向點(diǎn)運(yùn)動,過軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).設(shè)運(yùn)動時間為秒.

①若相似,請直接寫出的值;

能否為等腰三角形?若能,求出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地物線點(diǎn)、、均不為0)的頂點(diǎn)為,與軸的交點(diǎn)為,我們稱以為頂點(diǎn),對稱軸是軸且過點(diǎn)的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.

1)求拋物線的衍生拋物線和衍生直線的解析式;

2)若一條拋物線的衍生拋物線和衍生直線分別是,求這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點(diǎn),過點(diǎn)A的⊙FAB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為 ( )

A. 3 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)DDFBC,交AB的延長線于點(diǎn)F.

(1)求證:DF為⊙O的切線;

(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于題目:“如圖1,平面上,正方形內(nèi)有一長為、寬為的矩形,它可以在正方形的內(nèi)部及邊界通過移轉(zhuǎn)(即平移或旋轉(zhuǎn))的方式,自由地從橫放移轉(zhuǎn)到豎放,求正方形邊長的最小整數(shù).”甲、乙、丙作了自認(rèn)為邊長最小的正方形,先求出該邊長,再取最小整數(shù)

甲:如圖2,思路是當(dāng)為矩形對角線長時就可移轉(zhuǎn)過去;結(jié)果取

乙:如圖3,思路是當(dāng)x為矩形外接圓直徑長時就可移轉(zhuǎn)過去;結(jié)果取n14

丙:如圖4,思路是當(dāng)為矩形的長與寬之和的倍時就可移轉(zhuǎn)過去;結(jié)果取

下列正確的是(  )

A.甲的思路錯,他的值對

B.乙的思路和他的值都對

C.甲和丙的值都對

D.甲、乙的思路都錯,而丙的思路對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形為正方形,點(diǎn)的坐標(biāo)為,動點(diǎn)沿邊以每秒的速度運(yùn)動,同時動點(diǎn)沿邊以同樣的速度運(yùn)動,連接、交于點(diǎn).

1)試探索線段、的關(guān)系,寫出你的結(jié)論并說明理由;

2)連接、,分別取、、、的中點(diǎn)、、、,則四邊形是什么特殊平行四邊形?請?jiān)趫D①中補(bǔ)全圖形,并說明理由.

3)如圖②當(dāng)點(diǎn)運(yùn)動到中點(diǎn)時,點(diǎn)是直線上任意一點(diǎn),點(diǎn)是平面內(nèi)任意一點(diǎn),是否存在點(diǎn)使以、、為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案