【題目】如圖,已知拋物線與軸交于、兩點(diǎn),,交軸于點(diǎn),對(duì)稱軸是直線.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)連接,是線段上一點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)正好落在上,求點(diǎn)的坐標(biāo);
(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),過(guò)作軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為秒.
①若與相似,請(qǐng)直接寫出的值;
②能否為等腰三角形?若能,求出的值;若不能,請(qǐng)說(shuō)明理由.
【答案】(1);;(2);(3)①;②秒或秒.
【解析】
(1)將、的坐標(biāo)代入中,即可求解;
(2)確定直線的解析式為,根據(jù)點(diǎn)、關(guān)于直線對(duì)稱,即可求解;
(3)①與相似,則或,即可求解;②分、、三種情況,分別求解即可.
解:(1))∵點(diǎn)、關(guān)于直線對(duì)稱,,
∴,,
代入中,得:,解得,
∴拋物線的解析式為,
∴點(diǎn)坐標(biāo)為;
(2)如圖,連接BC,
設(shè)直線的解析式為,
則有:,解得,
∴直線的解析式為,
∵點(diǎn)、關(guān)于直線對(duì)稱,
又到對(duì)稱軸的距離為1,
∴,
∴點(diǎn)的橫坐標(biāo)為2,將代入中,
得:,
∴;
(3)①如下圖,
,,
與相似,則或,
即:或,
解得:或或3或1(舍去、、3),
故:;
②∵,軸,
∴,
∵為等腰三角形,
∴分三種情況討論,
第一種,當(dāng)時(shí),
∵,
∴,
∴,
∴;
第二種,當(dāng)時(shí),在中,
∵,
∴,
∴,
即,
∴;
第三種,當(dāng)時(shí),
則點(diǎn)、重合,此時(shí),
而,故不符合題意,
綜上述,當(dāng)秒或秒時(shí),為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在y軸的正半軸上,⊙P交x軸于B、C兩點(diǎn),交y軸于點(diǎn)A,以AC為直角邊作等腰Rt△ACD,連接BD分別交y軸和AC于E、F兩點(diǎn),連接AB.
(1)求證:AB=AD;
(2)若BF=4,DF=6,求線段CD的長(zhǎng);
(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時(shí),的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,,分別是邊、上任意點(diǎn).以線段為邊,在上方作等邊,取邊的中點(diǎn),連接,則的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=ax2﹣4ax+a+1(a>0)
(1)若二次函數(shù)的圖象與x軸有交點(diǎn),求a的取值范圍;
(2)若P(m,n)和Q(5,b)是拋物線上兩點(diǎn),且n>b,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)m≤x≤m+2時(shí),求y的最小值(用含a、m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)“校園詩(shī)歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;
(2)賽前規(guī)定,成績(jī)由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績(jī)?yōu)?/span>78分,試判斷他能否獲獎(jiǎng),并說(shuō)明理由;
(3)成績(jī)前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2010河南20題)為鼓勵(lì)學(xué)生參與體育鍛煉,學(xué)校計(jì)劃拿出不超過(guò)1600元的資金再購(gòu)買一批籃球和排球.已知籃球和排球的單價(jià)比為,單價(jià)和為80元.
(1)籃球和排球的單價(jià)分別是多少元?
(2)若要求購(gòu)買的籃球和排球的總數(shù)量是36個(gè),且購(gòu)買的籃球的數(shù)量多于25個(gè),有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,BC=m,E為BC邊上一點(diǎn),沿AE翻折△ABE,點(diǎn)B落在點(diǎn)F處.
(1)連接CF,若CF//AE,求EC的長(zhǎng)(用含m的代數(shù)式表示);
(2)若EC=,當(dāng)點(diǎn)F落在矩形ABCD的邊上時(shí),求m的值;
(3)連接DF,在BC邊上是否存在兩個(gè)不同位置的點(diǎn)E,使得?若存在,直接寫出m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教育行政部門為了解初中學(xué)生參加綜合實(shí)踐活動(dòng)的情況,隨機(jī)抽取了本市初一、初二、初三年級(jí)各名學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如圖所示,請(qǐng)你根據(jù)圖中的信息回答問(wèn)題.
(1)在被調(diào)查的學(xué)生中,參加綜合實(shí)踐活動(dòng)的有多少人,參加科技活動(dòng)的有多少人;
(2)如果本市有萬(wàn)名初中學(xué)生,請(qǐng)你估計(jì)參加科技活動(dòng)的學(xué)生約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市水果批發(fā)欲將A市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過(guò)程中的損耗均為200元/時(shí),其它主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度(千米/時(shí)) | 運(yùn)費(fèi)(元/千米) | 裝卸費(fèi)用(元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
(1) 如果汽車的總支出費(fèi)用比火車費(fèi)用多1100元,你知道本市與A市之間的路程是多少千米嗎?請(qǐng)你列方程解答.(總支出包含損耗、運(yùn)費(fèi)和裝卸費(fèi)用)
(2) 如果A市與B市之間的距離為S千米,你若是A市水果批發(fā)部門的經(jīng)理,要想將這種水果運(yùn)往B市銷售,試分析以上兩種運(yùn)輸工具中選擇哪種運(yùn)輸方式比較合算呢?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com