【題目】如圖,在矩形中,,,,分別是邊、上任意點(diǎn).以線段為邊,在上方作等邊,取邊的中點(diǎn),連接,則的最小值是_______.
【答案】
【解析】
先證明點(diǎn)F、B、E、H四點(diǎn)共圓,進(jìn)而可得∠FBH=∠FEH=60°,再根據(jù),求得tan∠ABD=,進(jìn)而可得∠ABD=60°,由此可得點(diǎn)B、H、D在同一直線上,則當(dāng)CH⊥BD時(shí),CH取得最小值,最后根據(jù)等積法求得CH的最小值即可.
解:如圖,連接FH,BH,BD,
∵在矩形ABCD中,
∴∠FBE=∠A=∠BCD=90°,,,
∴在Rt△BCD中,,
∵在等邊中,點(diǎn)H為EG的中點(diǎn),
∴FH⊥GE,∠FEH=60°,
∴∠FHE=90°,
又∵∠FBE=90°,
∴點(diǎn)F、B、E、H四點(diǎn)共圓,
∴∠FBH=∠FEH=60°,
∵在Rt△ABD中,,,
∴tan∠ABD=,
∴∠ABD=60°,
∴點(diǎn)B、H、D在同一直線上,
∴當(dāng)CH⊥BD時(shí),CH取得最小值,
若CH⊥BD,則
∴,
∴CH的最小值為,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育未來指數(shù)是為了評(píng)估教育系統(tǒng)在培養(yǎng)學(xué)生如何應(yīng)對(duì)快速多變的未來社會(huì)方面所呈現(xiàn)的效果.現(xiàn)對(duì)教育未來指數(shù)得分前35名的國家和地區(qū)的有關(guān)數(shù)據(jù)進(jìn)行收集、整理、描述和分析后,給出了部分信息.
a.教育未來指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成7組:,,,,,,);
b.教育未來指數(shù)得分在這一組的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5
c.35個(gè)國家和地區(qū)的人均國內(nèi)生產(chǎn)總值和教育未來指數(shù)得分情況統(tǒng)計(jì)圖如下:
d.中國和中國香港的教育未來指數(shù)得分分別為32.9和68.5.
(以上數(shù)據(jù)來源于《國際統(tǒng)計(jì)年鑒(2018)》和國際在線網(wǎng))
根據(jù)以上信息,回答下列問題:
(1)中國香港的教育未來指數(shù)得分排名世界第______;
(2)在35個(gè)國家和地區(qū)的人均國內(nèi)生產(chǎn)總值和教育未來指數(shù)得分情況統(tǒng)計(jì)圖中,包括中國香港在內(nèi)的少數(shù)幾個(gè)國家和地區(qū)所對(duì)應(yīng)的點(diǎn)位于虛線l的上方,請(qǐng)?jiān)趫D中用“○”畫出代表中國香港的點(diǎn);
(3)在教育未來指數(shù)得分比中國高的國家和地區(qū)中,人均國內(nèi)生產(chǎn)總值的最大值約為_____萬美元;(結(jié)果保留一位小數(shù))
(4)下列推斷合理的是__________.(只填序號(hào)即可)
①相較于點(diǎn)所代表的國家和地區(qū),中國的教育未來指數(shù)得分還有一定差距,“十三五”規(guī)劃提出“教育優(yōu)先發(fā)展,教育強(qiáng)則國家強(qiáng)”的任務(wù),進(jìn)一步提高國家教育水平;
②相較于點(diǎn)所代表的國家和地區(qū),中國的人均國內(nèi)生產(chǎn)總值還有一定差距,中國提出“決勝全面建成小康社會(huì)”的奮斗目標(biāo),進(jìn)一步提高人均國內(nèi)生產(chǎn)總值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<120°)得到,與BC,AC分別交于點(diǎn)D,E.設(shè),的面積為,則與的函數(shù)圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)在平面直角坐標(biāo)系中,按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,2),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,1),第4次接著運(yùn)動(dòng)到點(diǎn)(4,0),……,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第27次運(yùn)動(dòng)后,動(dòng)點(diǎn)的坐標(biāo)是( )
A.(26,0)B.(26,1)C.(27,1)D.(27,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為,直線與拋物線交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).
(1)求點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段及拋物線在兩點(diǎn)之間的部分圍成的封閉區(qū)域(不含邊界)記為.
①當(dāng)時(shí),結(jié)合函數(shù)圖象,直接寫出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);
②如果區(qū)域內(nèi)有2個(gè)整點(diǎn),請(qǐng)求出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,六邊形中,,,.
(1)找出這個(gè)六邊形中所有相等的內(nèi)角_______.證明其中的一個(gè)結(jié)論.
(2)如果,證明對(duì)角線,互相平分;
(3)如圖,如果,,,,,對(duì)角線平分對(duì)角線,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),是以點(diǎn)為圓心,為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連接,則線段的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于、兩點(diǎn),,交軸于點(diǎn),對(duì)稱軸是直線.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)連接,是線段上一點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)正好落在上,求點(diǎn)的坐標(biāo);
(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),過作軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為秒.
①若與相似,請(qǐng)直接寫出的值;
②能否為等腰三角形?若能,求出的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投擲一次骰子,向上一面的點(diǎn)數(shù)記為,再投擲一次骰子,向上一面的點(diǎn)數(shù)記為,這樣就確定點(diǎn)的一個(gè)坐標(biāo),那么點(diǎn)落在雙曲線上的概率為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com