【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分的面積為(結(jié)果保留π)( )
A.
B.
C.
D.16
【答案】C
【解析】連接AD,OD,
∵等腰直角△ABC中,
∴∠ABD=45°.
∵AB是圓的直徑,
∴∠ADB=90°,
∴△ABD也是等腰直角三角形,
∴ .
∵AB=8,
∴AD=BD=4 ,
∴S陰影=S△ABC-S△ABD-S弓形AD
=S△ABC-S△ABD-(S扇形AOD- S△ABD)
= ×8×8- ×4 ×4 - + × ×4 ×4
=16-4π+8
=24-4π.
所以答案是:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用扇形面積計(jì)算公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對(duì)稱,點(diǎn)是直線位于軸右側(cè)部分圖象上一點(diǎn),連接,已知.
(1)求直線的解析式;
(2)如圖2,沿著直線平移得,平移后的點(diǎn)與點(diǎn)重合.點(diǎn)為直線上的一動(dòng)點(diǎn),當(dāng)的值最小時(shí),請求出的最小值及此時(shí)點(diǎn)的坐標(biāo);
(3)如圖3,將沿直線是翻折得點(diǎn)為平面內(nèi)任意一動(dòng)點(diǎn),在直線上是否存在一點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是矩形;若存在,請直接寫出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠C=30°,⊙O的半徑為5,若點(diǎn)P是⊙O上的一點(diǎn),在△ABP中,PB=AB,則PA的長為( )
A.5
B.
C.5
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題提出)
學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究.
(初步思考)
我們不妨將問題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
(深入探究)
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN是等邊三角形,直線AN,MC交于點(diǎn)E,直線BM,CN交于點(diǎn)F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,其他條件不變,在(2)中畫出符合要求的圖形,并判斷(1)(2)題中的兩結(jié)論是否依然成立.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC,BC邊上,C,D兩點(diǎn)不重合,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示放置,點(diǎn)A1,A2,A3,…和C1,C2,C3,…分別在直線y=x+1和x軸上,則點(diǎn)B2020的縱坐標(biāo)是_____,點(diǎn)Bn的縱坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺(tái)節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺(tái)甲型設(shè)備比購買2臺(tái)乙型設(shè)備多花16萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號(hào)設(shè)備的價(jià)格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,下列結(jié)論錯(cuò)誤的是( )
A.它的圖象與x軸有兩個(gè)交點(diǎn)
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對(duì)稱軸在y軸的右側(cè)
D.x<m時(shí),y隨x的增大而減小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com