【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如圖所示放置,點(diǎn)A1,A2A3,C1C2,C3,分別在直線y=x+1x軸上,則點(diǎn)B2020的縱坐標(biāo)是_____,點(diǎn)Bn的縱坐標(biāo)是_____

【答案】22019 2n1

【解析】

根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合正方形的性質(zhì)即可得出點(diǎn)B1B2、B3、的坐標(biāo),根據(jù)點(diǎn)坐標(biāo)的變化找出點(diǎn)Bn的坐標(biāo),依此即可得出結(jié)論.

解:當(dāng)x=0時,y=x+1=1,

∴點(diǎn)A1的坐標(biāo)為(01).

A1B1C1O為正方形,

∴點(diǎn)C1的坐標(biāo)為(1,0),點(diǎn)B1的坐標(biāo)為(1,1).

同理,可得:B23,2),B37,4),B415,8),

∴點(diǎn)Bn的坐標(biāo)為(2n1,2n1),

∴點(diǎn)Bn的縱坐標(biāo)為2n1,

∴點(diǎn)B2020的縱坐標(biāo)為22019

故答案為:22019,2n1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABC60°,點(diǎn)E,F分別在CDBC的延長線上,AEBD,EFBC,CF

1)求證:四邊形ABDE是平行四邊形;

2)求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某超市小明買了1千克甲種糖果和2千克乙種糖果,共付38元;小強(qiáng)買了2千克甲種糖果和0.5千克乙種糖果,共付27元.

(1)求該超市甲、乙兩種糖果每千克各需多少元?

(2)某顧客到該超市購買甲、乙兩種糖果共20千克混合,欲使總價不超過240元,問該顧客混合的糖果中甲種糖果最少多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分的面積為(結(jié)果保留π)( )

A.
B.
C.
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車同時從A地出發(fā),各自都以自己的速度勻速向B地行駛,甲車先到B地,停車1小時后按原速勻速返回,直到兩車相遇.已知,乙車的速度是60千米/時,如圖是兩車之間的距離y(千米)與乙車行駛的時間x(小時)之間的函數(shù)圖象,則下列說法不正確的是( 。

A.A、B兩地之間的距離是450千米

B.乙車從出發(fā)到與甲車返回時相遇所用的時間是6.6小時

C.甲車的速度是80千米/

D.點(diǎn)M的坐標(biāo)是(6,90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=6,OC=4,F(xiàn)是AB上的一個動點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù) 的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時,求該函數(shù)的解析式;
(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為5,弦AB長為8,過AB的中點(diǎn)E有一動弦CD(點(diǎn)C只在弦AB所對的劣弧上運(yùn)動,且不與A、B重合),設(shè)CE=x,ED=y,下列圖象中能夠表示y與x之間函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖①,在正方形ABCD中,點(diǎn)P在邊CD上(不與點(diǎn)C、D重合),連接BP,將BCP繞點(diǎn)C順時針旋轉(zhuǎn)至DCE,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)D.旋轉(zhuǎn)的角度是 .應(yīng)用:將圖①中的BP延長交邊DE于點(diǎn)F,其它條件不變,如圖②,求∠BFE的度數(shù)。拓展:如圖②,若DP=2CP,BC=6,則四邊形ABED的面積是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的二次函數(shù)y=ax2+(a2﹣1)x﹣a的圖象與x軸的一個交點(diǎn)的坐標(biāo)為(m,0).若2<m<3,則a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案