【題目】我市某房地產(chǎn)開發(fā)公司預(yù)計今年月份將竣工一商品房小區(qū),其中包括高層住宅區(qū)和別墅區(qū)一共萬平方米,且高層住宅區(qū)的面積不少于別墅區(qū)面積的.

(1)別墅區(qū)最多多少萬平方米?

(2)今年一月初,公司開始出售該小區(qū),其中高層住宅區(qū)的銷售單價為 元/平方米,別墅區(qū)的銷售單價為元/平方米,并售出高層住宅區(qū)萬平方米,別墅區(qū)萬平方米,二月時,受最新政策“去庫存,滿足剛需”以及銀行房貸利率打折的影響,該小區(qū)高層住宅區(qū)的銷售單價比一月增加了,銷售面積比一月增加了;別墅區(qū)的銷售單價比一月份減少了,銷售面積比一月增加了,于是二月份該小區(qū)高層住宅區(qū)的銷售總額比別墅區(qū)的銷售總額多萬元,求的值.

【答案】(1)所以洋房區(qū)最多15萬平方米(2)5

【解析】

試題(1)設(shè)別墅區(qū)有萬平方米,則高層住宅區(qū)有萬平方米,根據(jù)高層住宅區(qū)的面積不少于別墅區(qū)面積的3倍,即可得出關(guān)于的一元一次不等式,解之即可得出結(jié)論;
(2)根據(jù)二月份該小區(qū)高層住宅區(qū)的銷售總額比別墅區(qū)的銷售總額多10080萬元,即可得出關(guān)于的一元二次方程,解之取其正值即可得出結(jié)論.

試題解析:(1)設(shè)別墅區(qū)有x萬平方米,則高層住宅區(qū)有(60x)萬平方米,

根據(jù)題意得:

解得:

答:別墅區(qū)最多15萬平方米.

(2)根據(jù)題意得:8000(1+a%)×6(1+2a%)12000(110%)×4(1+a%)=10080,

解得: (舍去).

答:a的值為5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我校圖書館大樓工程在招標時,接到甲乙兩個工程隊的投標書,每施工一個月,需付甲工程隊工程款16萬元,付乙工程隊12萬元。工程領(lǐng)導小組根據(jù)甲乙兩隊的投標書測算,可有三種施工方案:

1)甲隊單獨完成此項工程剛好如期完工;

2)乙隊單獨完成此項工程要比規(guī)定工期多用3個月;

3)若甲乙兩隊合作2個月,剩下的工程由乙隊獨做也正好如期完工。

你覺得哪一種施工方案最節(jié)省工程款,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點M是弧AB的中點,CMAB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應(yīng)雙十二購物狂歡節(jié)活動,某零食店推出了甲、乙、丙三類餅干禮包,已知甲、乙、丙三類禮包均由、三種餅干搭配而成,每袋禮包的成本均為、三種餅干成本之和.每袋甲類禮包有5種餅干、2種餅干、8種餅干;每袋丙類禮包有7種餅干、1種餅干、4種餅干.已知甲每袋成本是該袋中種餅干成本的3倍,利潤率為,每袋乙的成本是其售價的,利潤是每袋甲利潤的;每袋丙禮包利潤率為.若該網(wǎng)店1212日當天銷售甲、乙、丙三種禮包袋數(shù)之比為,則當天該網(wǎng)店銷售總利潤率為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,在中,,點是線段延長線上一點,且,點是線段上一點,連接,以為斜邊作等腰,連接,滿是條件.

1)若,,,求的長度;

2)求證:;

3)如圖2,點是線段延長線上一點,其余條件與題干一致,探究、、之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名學生進行射擊練習,兩人在相同條件下各射靶10次,將射擊結(jié)果作統(tǒng)計分析如下:

命中環(huán)數(shù)

5

6

7

8

9

10

甲命中環(huán)數(shù)的次數(shù)

1

4

2

1

1

1

乙命中環(huán)數(shù)的次數(shù)

1

2

4

2

1

0

請你從射擊穩(wěn)定性方面評價甲、乙兩人的射擊水平,則_____比較穩(wěn)定(填”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點F,交AC于G,F(xiàn)是AD的中點.

(1)求證:四邊形ADCE是平行四邊形;

(2)若EB是∠AEC的角平分線,請寫出圖中所有與AE相等的邊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1

2)已知,求的值

3(x+y-z)(x-y+z)

4[(x+2y)(x-2y)-(x+4y)2]÷4y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:

商品

進價(元/件)

售價(元/件)

200

100

若用360元購進甲種商品的件數(shù)與用180元購進乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進價是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

同步練習冊答案