【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:
商品 | 甲 | 乙 |
進(jìn)價(jià)(元/件) | ||
售價(jià)(元/件) | 200 | 100 |
若用360元購(gòu)進(jìn)甲種商品的件數(shù)與用180元購(gòu)進(jìn)乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?
(2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤(rùn)為元,求與之間的函數(shù)關(guān)系式,并求出的最小值.
【答案】(1)分別是120元,60元;(2),當(dāng)a=30件時(shí),=3200元
【解析】
(1)根據(jù)用360元購(gòu)進(jìn)甲種商品的件數(shù)與用180元購(gòu)進(jìn)乙種商品的件數(shù)相同列出方程,解方程即可;
(2)根據(jù)總利潤(rùn)=甲種商品一件的利潤(rùn)×甲種商品的件數(shù)+乙種商品一件的利潤(rùn)×乙種商品的件數(shù)列出與之間的函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的性質(zhì)即可求出的最小值.
解:(1)依題意可得方程:,
解得,
經(jīng)檢驗(yàn)是方程的根,
∴元,
答:甲、乙兩種商品的進(jìn)價(jià)分別是120元,60元;
(2)∵銷售甲種商品為件,
∴銷售乙種商品為件,
根據(jù)題意得:,
∵,
∴的值隨值的增大而增大,
∴當(dāng)時(shí),(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某房地產(chǎn)開發(fā)公司預(yù)計(jì)今年月份將竣工一商品房小區(qū),其中包括高層住宅區(qū)和別墅區(qū)一共萬(wàn)平方米,且高層住宅區(qū)的面積不少于別墅區(qū)面積的倍.
(1)別墅區(qū)最多多少萬(wàn)平方米?
(2)今年一月初,公司開始出售該小區(qū),其中高層住宅區(qū)的銷售單價(jià)為 元/平方米,別墅區(qū)的銷售單價(jià)為元/平方米,并售出高層住宅區(qū)萬(wàn)平方米,別墅區(qū)萬(wàn)平方米,二月時(shí),受最新政策“去庫(kù)存,滿足剛需”以及銀行房貸利率打折的影響,該小區(qū)高層住宅區(qū)的銷售單價(jià)比一月增加了,銷售面積比一月增加了;別墅區(qū)的銷售單價(jià)比一月份減少了,銷售面積比一月增加了,于是二月份該小區(qū)高層住宅區(qū)的銷售總額比別墅區(qū)的銷售總額多萬(wàn)元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題背景:在△ABC中,AB,BC,AC三邊的長(zhǎng)分別為,求這個(gè)三角形的面積,小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖所示,這樣不需要求高,而借用網(wǎng)格就能計(jì)算出它的面積.請(qǐng)將△ABC的面積直接填寫在橫線上 .
思維拓展:我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC中,AB,BC,AC三邊長(zhǎng)分別為,2(a>0),請(qǐng)利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,直接寫出此三角形最長(zhǎng)邊上的高是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B坐標(biāo)為(6,0)、(0,6),P為線段AB上的一點(diǎn).
(1)如圖1,若P為AB的中點(diǎn),點(diǎn)M、N分別是OA、OB邊上的動(dòng)點(diǎn),且保持AM=ON,則在點(diǎn)M、N運(yùn)動(dòng)的過(guò)程中,探究線段PM、PN之間的位置關(guān)系與數(shù)量關(guān)系,并說(shuō)明理由.
(2)如圖2,若P為線段AB上異于A、B的任意一點(diǎn),過(guò)B點(diǎn)作BD⊥OP,交OP、OA分別于F、D兩點(diǎn),E為OA上一點(diǎn),且∠PEA=∠BDO,試判斷線段OD與AE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在和中,、、、在同一直線上,下面有四個(gè)條件:
①;②;③;④.請(qǐng)你從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,寫出一個(gè)真命題,并加以證明.
解:我寫的真命題是:
已知:____________________________________________;
求證:___________.(注:不能只填序號(hào))
證明如下:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中, ∠C = 90°,∠B= 30°,點(diǎn)D是線段AB的垂直平分線與BC的交點(diǎn), 連接AD,則△ACD與△ADB的面積比為( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間x (時(shí))的關(guān)系可近似地用二次函數(shù)y=-200x2+400x刻畫;1.5時(shí)后(包括1.5時(shí))y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少
(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期,小明和小李報(bào)名參加了越野跑比賽,已知兩人同時(shí)出發(fā),以各自的速度勻速跑步前進(jìn),出發(fā)一段時(shí)間后,小明身體不適,停下來(lái)休息了1分鐘,再以原速繼續(xù)跑步前進(jìn),當(dāng)小明到達(dá)終點(diǎn)后,立即走路返回去接小李;兩人相遇后,小明立即以原來(lái)的速度跑步前往終點(diǎn),1分鐘后到達(dá)終點(diǎn).已知兩人間的距離y(m)隨兩人運(yùn)動(dòng)時(shí)間x(s)變化如圖.問:當(dāng)小明第一次到達(dá)終點(diǎn)時(shí),小李距終點(diǎn)的距離為_____m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com