【題目】正方形ABCD中,F是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應(yīng)點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當(dāng)GB平分∠CGE時,BM=2,AE=8,則ED=______.
【答案】4.
【解析】解:如圖,過B作BP⊥EH于P,連接BE,交FH于N,則∠BPG=90°.∵四邊形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=45°,由折疊得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=4.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=4.故答案為:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當(dāng)刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),求該光盤的直徑是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,那么BM的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016.鎮(zhèn)江)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.
(1)若∠ABC=35°,求∠CAO的度數(shù);
(2)求證:CO=DO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸的一個交點是A(1,0),對稱軸為直線x=﹣1,則一元二次方程ax2+bx+c=0的解是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個無蓋正方體紙盒的表面展開圖,請解答下列問題:
(1)若在圖上補(bǔ)上一個同樣大小的正方形F,便它能圍成一個正方體,共有 種補(bǔ)法;
(2)請畫出兩種不同的補(bǔ)法;
(3)設(shè)A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=6﹣a2b,若(2)中的展開圖圍成正方體后.相對兩個面的代數(shù)式之和都相等,分別求E、F所代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段AB上一點,△ACM,△CBN是等邊三角形,直線AN,MC交于點E,直線BM,CN交于點F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉(zhuǎn)90°,其他條件不變,在(2)中畫出符合要求的圖形,并判斷(1)(2)題中的兩結(jié)論是否依然成立.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①射線和射線是同一條射線.②將一根細(xì)木條固定在墻上,至少需要釘兩個釘子,其理論依據(jù)是:兩點之間線段最短.③兩點間的連線的長度叫做這兩點間的距離.
④表示北偏東方向、南偏東方向的兩條射線所夾的角為直角.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com