【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上.若四邊形EGFH是菱形,則AE的長(zhǎng)是( 。
A. 2 B. 3 C. D.
【答案】D
【解析】連接EF交AC于點(diǎn)M,由菱形的性質(zhì)可得FM=EM,EF⊥AC;利用“AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性質(zhì)求解即可.
如圖,連接EF交AC于點(diǎn)M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM=AC=5,tan∠BAC=,可得EM=;在Rt△AME中,由勾股定理求得AE==6.25.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是 .
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運(yùn)動(dòng),若射線OA上存在點(diǎn)到圓C的距離跨度為2,直接寫出圓心C的橫坐標(biāo)xc的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點(diǎn)(1,0)在函數(shù)圖象上,那么abc、2a+b、a+b+c、a﹣b+c這四個(gè)代數(shù)式中,值大于或等于零的數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠B=∠DEF,AB=DE,要說(shuō)明△ABC≌△DEF.(1)若以“ASA”為依據(jù),還缺條件 _________________ ;(2)若以“AAS”為依據(jù),還缺條件___________________;(3)若以“SAS”為依據(jù),還缺條件___________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,F是AB上一點(diǎn),H是BC延長(zhǎng)線上一點(diǎn),連接FH,將△FBH沿FH翻折,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在AD上,EH與CD交于點(diǎn)G,連接BG交FH于點(diǎn)M,當(dāng)GB平分∠CGE時(shí),BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地果園分別有橘子40噸和60噸,C、D兩地分別需要橘子30噸和70噸;已知從A、B到C、D的運(yùn)價(jià)如表:
到C地 | 到D地 | |
A果園 | 每噸15元 | 每噸12元 |
B果園 | 每噸10元 | 每噸9元 |
(1)若從A果園運(yùn)到C地的橘子為x噸,則從A果園運(yùn)到D地的橘子為 ____噸,
從A果園將橘子運(yùn)往D地的運(yùn)輸費(fèi)用為 ____ 元.
(2)用含x的式子表示出總運(yùn)輸費(fèi)(要求:列式、化簡(jiǎn)).
(3)求總運(yùn)輸費(fèi)用的最大值和最小值.
(4)若這批橘子在C地和D地進(jìn)行再加工,經(jīng)測(cè)算,全部橘子加工完畢后總成本為w元,且w=-(x-25)2+4360.則當(dāng)x= ___ 時(shí),w有最 __ 值(填“大”或“小”).這個(gè)值是 __ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店三、四月份出售同一品牌各種規(guī)格空調(diào)銷售臺(tái)輸入下表,回答:
匹 | 匹 | 匹 | 匹 | |
三月 | ||||
四月 |
商店平均每月銷售空調(diào)________臺(tái);
商店出售各種規(guī)格的空調(diào)中,眾數(shù)有________匹;
在研究六月份進(jìn)貨時(shí),商店經(jīng)理決定________(匹)的空調(diào)要多進(jìn),________(匹)的空調(diào)要少進(jìn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),使AD,AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 , ∠AFB=∠
(2)如圖2,正方形ABCD中,P,Q分別是BC,CD邊上的點(diǎn),且∠PAQ=45°,試通過(guò)旋轉(zhuǎn)的方式說(shuō)明:DQ+BP=PQ
(3)在(2)題中,連接BD分別交AP,AQ于M,N,你還能用旋轉(zhuǎn)的思想說(shuō)明BM2+DN2=MN2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com