如圖,⊙O過點(diǎn)B、C.圓心O在等腰直角△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為( 。
A.
10
B.2
3
C.3
2
D.
13

過A作AD⊥BC,由題意可知AD必過點(diǎn)O,連接OB;
∵△BAC是等腰直角三角形,AD⊥BC,
∴BD=CD=AD=3;
∴OD=AD-OA=2;
Rt△OBD中,根據(jù)勾股定理,得:
OB=
BD2+OD2
=
13

故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,直徑AB⊥CD于點(diǎn)F,連接DO并延長交AC于點(diǎn)E,且DE⊥AC
(1)求證:CE=DF;
(2)求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AB=AC=5cm,cosB=
3
5
.如果⊙O的半徑為
10
cm,且經(jīng)過點(diǎn)B,C,那么線段AO=______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“圓材埋壁”是我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學(xué)語言表述是:“如圖所示,CD為⊙O的直徑,CD⊥AB,垂足為E,CE=1寸,AB=1尺,求直徑CD長是多少寸?”(注:1尺=10寸)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AB和弦CD相交于點(diǎn)E,已知AE=1cm,EB=5cm,∠DEB=60°,
(1)求CD的長;
(2)若直線CD繞點(diǎn)E順時(shí)針旋轉(zhuǎn)15°,交⊙O于C、D,直接寫出弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在半徑是4的⊙O中,點(diǎn)Q為優(yōu)弧
MN
的中點(diǎn),圓心角∠MON=60°,點(diǎn)P在
MQ
(M點(diǎn)除外)上運(yùn)動(dòng),設(shè)點(diǎn)P到弦MN的距離為x,△OMN的面積是S.
(1)求弦MN的長;
(2)試求陰影部分面積y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)試分析比較,當(dāng)自變量x為何值時(shí),陰影部分面積y與S的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,BC是弦,OD⊥BC于D,交
BC
于E.
(1)請寫出四個(gè)不同類型的正確結(jié)論.
(2)若BC=8,DE=2.求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知半徑為2的⊙O中,弦AB=2
3
,則弦AB所對圓周角的度數(shù)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有兩個(gè)同心圓,大圓的弦AB與小圓相切于點(diǎn)P,大圓的弦CD經(jīng)過點(diǎn)P,且CD=13,PD=4,兩圓組成的圓環(huán)的面積是______.

查看答案和解析>>

同步練習(xí)冊答案