【題目】如圖,在ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E.過點(diǎn)DDFACAC于點(diǎn)F.

(1)求證:DF是⊙O的切線;

(2)若⊙O的半徑為8,CDF=22.5°,求陰影部分的面積.

【答案】(1)證明見解析;(2)S陰影= 16π﹣32.

【解析】試題分析:

(1)連接OD,AD,由AB⊙O的直徑可得∠ADB=90°,結(jié)合AB=AC可得點(diǎn)DBC的中點(diǎn),結(jié)合點(diǎn)OAB中點(diǎn)可得OD是△ABC的中位線,由此可得OD∥AC,結(jié)合DF⊥AC即可得到DF⊥OD,由此可得DF⊙O的切線;

(2)連接OE,由DF⊥AC于點(diǎn)F結(jié)合∠CDF=22.5°可得∠C=67.5°,這樣結(jié)合AB=AC可得∠B=67.5°,從而可得∠BAC=45°,再結(jié)合AO=EO即可得到∠AOE=90°,這樣就可由S陰影=S扇形AOE-SAOE求出S陰影的大小了.

試題解析

(1)連接OD,AD.

AB是⊙O的直徑,

∴∠ADB=90°,

AB=AC,ADB=90°,

BD=CD,

AO=BO,

ODABC的中位線,

ODAC,

DFAC,

∴半徑ODDF,

DF是⊙O的切線.

(2)連接OE.

DFAC,CDF=22.5°,

∴∠C=67.5°,

AB=AC,

∴∠C=B=67.5°,

∴∠BAC=45°,

OA=OE,

∴∠AOE=90°,

又∵⊙O的半徑為8,

S陰影=S扇形AOE﹣SAOE=16π﹣32.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接EF.給出下列五個(gè)結(jié)論:①APEF;②APEFAPD一定是等腰三角形;PFE=∠BAP;⑤PDEC.其中正確結(jié)論的序號(hào)是(  )

A. ①②③④B. ①②④⑤C. ②③④⑤D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將四張邊長(zhǎng)各不相同的正方形紙片按如圖方式放入矩形ABCD內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設(shè)右上角與左下角陰影部分的周長(zhǎng)的差為l.若知道l的值,則不需要測(cè)量就能知道周長(zhǎng)的正方形的標(biāo)號(hào)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖)不重疊的放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為a厘米,寬為b厘米)的盒子底部(如圖),盒子底面未被卡片覆蓋的部分用陰影表示,則圖中兩塊陰影部分的周長(zhǎng)和是(

A. 4a厘米B. 4b厘米C. 2a+b)厘米D. 4a-b)厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:

平移表中帶陰影的方框,方框中三個(gè)數(shù)的和可能是( 。

A. 2018 B. 2019 C. 2040 D. 2049

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)實(shí)數(shù)4,點(diǎn)P(1,m)在反比例函數(shù)y1=的圖象上.

(1)求反比例函數(shù)的表達(dá)式;

(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2

(3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,∠ABD=90°,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE

1)求證:四邊形BECD是矩形;

2)連接DEBC于點(diǎn)F,連接AF,若CE=2,∠DAB=30°,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過或不足的部分分別用正、負(fù)數(shù)來表示,記錄如下表:

與標(biāo)準(zhǔn)質(zhì)量的差值

(單位:克)

5

2

0

1

3

6

數(shù)

1

4

3

4

5

3

1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?

2)若標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的20袋食品的總質(zhì)量為多少克?

3)若該種食品的合格標(biāo)準(zhǔn)為450±5克,求該食品的抽樣檢測(cè)的合格率.

查看答案和解析>>

同步練習(xí)冊(cè)答案