【題目】已知,,的中點(diǎn),是平面上的一點(diǎn),且,連接.

1)如圖,當(dāng)點(diǎn)在線段上時(shí),求的長(zhǎng);

2)當(dāng)是等腰三角形時(shí),求的長(zhǎng);

3)將點(diǎn)繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到點(diǎn),連接,求的最大值.

【答案】(1)2;(2)見解析;(3) .

【解析】

1)根據(jù)勾股定理求出AB的長(zhǎng),由直角三角形斜邊中線的性質(zhì)可求出CD的長(zhǎng),利用勾股定理求出PC的長(zhǎng)即可;(2)由DP=1可知點(diǎn)P在以D為圓心,1為半徑的圓上,分別討論、、的情況,求出PC的長(zhǎng)即可;(3)由旋轉(zhuǎn)性質(zhì)可知,,可得,由等腰直角三角形的性質(zhì)可知,進(jìn)而可證明,即可得,利用三角形三邊關(guān)系即可得答案.

(1)如圖1中,連接

中,,,

,

,

中,

(2)如圖2中,∵,

∴點(diǎn)在以點(diǎn)為圓心的⊙上.

①當(dāng)時(shí),

都在線段的垂直平分線上,設(shè)直線

,

,

中,

當(dāng)在線段上時(shí),,

當(dāng)在線段的延長(zhǎng)線上時(shí),,

②當(dāng)時(shí),∵,

,此種情形不存在;

③當(dāng)時(shí),同理這種情形不存在;

如圖3中

(3)如圖4中,連接

由旋轉(zhuǎn)可知:,,

,

,

,

,

,

,

,

,

,

,

∴點(diǎn)落在的延長(zhǎng)線與⊙的交點(diǎn)處,的值最大,

的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:記為,它與軸交于兩點(diǎn),;將旋轉(zhuǎn)得到,交軸于;將旋轉(zhuǎn)得到,交軸于如此進(jìn)行下去,直至得到,若點(diǎn)在第6段拋物線上,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)MBC上一點(diǎn),連接AM,且AB=AM,點(diǎn)EBM中點(diǎn),AFAB,連接EF,延長(zhǎng)FOAB于點(diǎn)N.

(1)若BM=4,MC=3,AC=,求AM的長(zhǎng)度;

(2)若∠ACB=45°,求證:AN+AF=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)如今,垃圾分類意識(shí)已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.

(1)直接寫出甲所拿的垃圾恰好是廚余垃圾的概率;

(2)求乙所拿的兩袋垃圾不同類的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥廠兩年前生產(chǎn)1t某種藥品的成本是5000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1t該種藥品的成本是3000元.設(shè)該種藥品生產(chǎn)成本的年平均下降率為x,則下列所列方程正確的是( 。

A. 5000×2(1﹣x)=3000 B. 5000×(1﹣x)2=3000

C. 5000×(1﹣2x)=3000 D. 5000×(1﹣x2)=3000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

工廠加工某種新型材料,首先要將材料進(jìn)行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進(jìn)行繼續(xù)加工處理這種材料時(shí),材料溫度是時(shí)間的函數(shù)下面是小明同學(xué)研究該函數(shù)的過程,把它補(bǔ)充完整:

在這個(gè)函數(shù)關(guān)系中,自變量x的取值范圍是______

如表記錄了17min內(nèi)10個(gè)時(shí)間點(diǎn)材料溫度y隨時(shí)間x變化的情況:

時(shí)間

0

1

3

5

7

9

11

13

15

17

溫度

15

24

42

60

m

上表中m的值為______

如圖,在平面直角坐標(biāo)系xOy中,已經(jīng)描出了上表中的部分點(diǎn)根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.

根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當(dāng)時(shí),yx之間的函數(shù)表達(dá)式為______,當(dāng)時(shí),yx之間的函數(shù)表達(dá)式為______

根據(jù)工藝的要求,當(dāng)材料的溫度不低于時(shí),方可以進(jìn)行產(chǎn)品加工,在圖中所示的溫度變化過程中,可以進(jìn)行加工的時(shí)間長(zhǎng)度為______min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=3+,B=45°,∠C=105°,點(diǎn) D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)PAE上一個(gè)動(dòng)點(diǎn),則PF+PB的最小值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某排球隊(duì)6名場(chǎng)上隊(duì)員的身高單位:是:180,184,188,190192,現(xiàn)用一名身高為186cm的隊(duì)員換下場(chǎng)上身高為192cm的隊(duì)員.

(1)求換人前身高的平均數(shù)及換人后身高的平均數(shù);

(2)求換人后身高的方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,進(jìn)行了如下探索活動(dòng).

問題原型:如圖(1),在矩形ABCD中,AB6,AD8,P、Q分別是ABAD邊的中點(diǎn),以APAQ為鄰邊作矩形APEQ,連接CE,則CE的長(zhǎng)為   (直接填空)

問題變式:(1)如圖(2),小明讓矩形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)E恰好落在AD上,連接CE、DQ,請(qǐng)幫助小明求出CEDQ的長(zhǎng),并求DQCE的值.

2)如圖(3),當(dāng)矩形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至如圖(3)位置時(shí),請(qǐng)幫助小明判斷DQCE的值是否發(fā)生變化?若不變,說明理由.若改變,求出新的比值.

問題拓展:若將“問題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB3,AD7,∠B45°,P、Q分別是AB、AD邊上的點(diǎn),且APAB,AQAD,以AP、AQ為鄰邊作平行四邊形APEQ.當(dāng)平行四邊形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至如圖(4)位置時(shí),連接CE、DQ.請(qǐng)幫助小明求出DQCE的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案