【題目】如圖,已知一張長(zhǎng)方形紙片,().將這張紙片沿著過(guò)點(diǎn)的折痕翻折,使點(diǎn)落在邊上的點(diǎn),折痕交于點(diǎn),將折疊后的紙片再次沿著另一條過(guò)點(diǎn)的折痕翻折,點(diǎn)恰好與點(diǎn)重合,此時(shí)折痕交于點(diǎn).
(1)在圖中確定點(diǎn)、點(diǎn)和點(diǎn)的位置;
(2)聯(lián)結(jié),則______;
(3)用含有的代數(shù)式表示線段的長(zhǎng).(注:直角三角形中,兩直角邊的平方的和等于斜邊的平方)
【答案】(1)詳見(jiàn)解析;(2)45;(3)
【解析】
(1)根據(jù)題意作出圖形即可;
(2)由折疊的性質(zhì)得到∠DAE=∠EAB,根據(jù)矩形的性質(zhì)得到∠BAD=∠DAE+∠EAB=90°,然后求解即可;
(3)由折疊的性質(zhì)得到DG=EG,設(shè)CG=x,則DG=EG=a-x,根據(jù)勾股定理即可得到結(jié)論.
解:(1)點(diǎn)、點(diǎn)和點(diǎn)的位置如圖所示;
(2)由折疊的性質(zhì)得:,
∵四邊形是矩形,
∴,
∴;
(3)由折疊的性質(zhì)得:,
∵∠ABE=90°,∠EAB=45°
∴∠AEB=45°
∴,
∴,
設(shè),則
在中,,即,
解得:,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA勻速移動(dòng),當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng),DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由;
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOD=160°,OB、OC、OM、ON是∠AOD內(nèi)的射線.
(1)如圖1,若OM平分∠AOB,ON平分∠BOD.當(dāng)OB繞點(diǎn)O在∠AOD內(nèi)旋轉(zhuǎn)時(shí),求∠MON的大;
(2)如圖2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.當(dāng)∠BOC繞點(diǎn)O在∠AOD內(nèi)旋轉(zhuǎn)時(shí),求∠MON的大;
(3)在(2)的條件下,若∠AOB=10°,當(dāng)∠B0C在∠AOD內(nèi)繞著點(diǎn)O以2度/秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),∠AOM=∠DON.求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩塊大小不等的等腰直角三角形按圖1放置,點(diǎn)為直角頂點(diǎn),點(diǎn)在上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)角度,連接、.
(1)若,則當(dāng) 時(shí),四邊形是平行四邊形;
(2)圖2,若于點(diǎn),延長(zhǎng)交于點(diǎn),求證:是的中點(diǎn);
(3)圖3,若點(diǎn)是的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控手段達(dá)到節(jié)水的目的.該市自來(lái)水收費(fèi)價(jià)格見(jiàn)價(jià)目表.
若某戶居民月份用水,則應(yīng)收水費(fèi):元.
(1)若該戶居民月份用水,則應(yīng)收水費(fèi)______元;
(2)若該戶居民、月份共用水(月份用水量超過(guò)月份),共交水費(fèi)元,則該戶居民,月份各用水多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過(guò)點(diǎn)A(0,3),點(diǎn)p是該直線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PM垂直x軸于點(diǎn)M,PN垂直y軸于點(diǎn)N,在四邊形PMON上分別截取:PC=MP,MB=OM,OE=ON,ND=NP.
(1)b= ;
(2)求證:四邊形BCDE是平行四邊形;
(3)在直線y=﹣x+b上是否存在這樣的點(diǎn)P,使四邊形BCDE為正方形?若存在,請(qǐng)求出所有符合的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華將一條直角邊長(zhǎng)為1的一個(gè)等腰直角三角形紙片(如圖1),沿它的對(duì)稱軸折疊1次后得到一個(gè)等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對(duì)稱軸折疊后得到一個(gè)等腰直角三角形(如圖3),則圖3中的等腰直角三角形的一條腰長(zhǎng)為_________;同上操作,若小華連續(xù)將圖1的等腰直角三角形折疊n次后所得到的等腰直角三角形(如圖n+1)的一腰長(zhǎng)為_________.
圖1 圖2 圖3 圖n+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(k為常數(shù),且k>0)與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,經(jīng)過(guò)點(diǎn)B的直線與拋物線的另一個(gè)交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為x= -4,求這個(gè)一次函數(shù)與拋物線的解析式;
(2)若直線m平行于該拋物線的對(duì)稱軸,并且可以在線段AB間左右移動(dòng),它與直線BD和拋物線分別交于點(diǎn)E、F,求當(dāng)m移動(dòng)到什么位置時(shí),EF的值最大,最大值是多少?
(3)問(wèn)原拋物線在第一象限是否存在點(diǎn)P,使得△APB∽△ABC?若存在,請(qǐng)求出這時(shí)k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距480km,C地在A、B兩地之間.一輛轎車以100km/h的速度從A地出發(fā)勻速行駛,前往B地.同時(shí),一輛貨車以80km/h的速度從B地岀發(fā),勻速行駛,前往A地.
(1)當(dāng)兩車相遇時(shí),求轎車行駛的時(shí)間;
(2)當(dāng)兩車相距120km時(shí),求轎車行駛的時(shí)間;
(3)若轎車到達(dá)B地后,立刻以120km/h的速度原路返回,再次經(jīng)過(guò)C地,兩次經(jīng)過(guò)C地的時(shí)間間隔為2.2h,求C地距離A地路程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com