【題目】做大小兩個長方體紙盒,尺寸如下(單位:cm

小紙盒

大紙盒

(1) 做這兩個紙盒共用料多少?

(2) 做小紙盒比做大紙盒少用料多少

【答案】(1)14ab+26bc+18ac;(2)10ab+22bc+14ac

【解析】

(1)分別算出大紙盒和小紙盒的用料,相加即可.

(2)分別算出大紙盒和小紙盒的用料,相減即可.

解:小紙盒:(2ab+2bc+2accm2;大紙盒:(12ab+24bc+16accm2

1)兩個紙盒共用料:

2ab+2bc+2ac+12ab+24bc+16ac

=14ab+26bc+18accm2

2)做小紙盒比做大紙盒少用料:

12ab+24bc+16ac)-(2ab+2bc+2ac

=10ab+22bc+14ac cm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運(yùn)動,某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個足球多50元,兩套隊(duì)服與三個足球的費(fèi)用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊(duì)服,送一個足球;乙商場優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.

(1)求每套隊(duì)服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費(fèi)用;

(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個花壇的形狀如圖所示,它的兩端是半徑相等的半圓,求:

(1)花壇的周長l

(2)花壇的面積S;

(3)a8m,r5m,求此時花壇的周長及面積3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組鄰邊相等的凸四邊形叫做“準(zhǔn)菱形”.利用該定義完成以下各題:

(1) 理解

填空:如圖1,在四邊形ABCD中,若     (填一種情況),則四邊形ABCD是“準(zhǔn)菱形”;

(2)應(yīng)用

證明:對角線相等且互相平分的“準(zhǔn)菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)

(3) 拓展

如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準(zhǔn)菱形”,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知為有理數(shù),定義一種新運(yùn)算,其意義是,試根據(jù)這種運(yùn)算完成下列各題

(1)求①23;②(43)(-2)

(2)任意選擇兩個有理數(shù),分別代替,并比較兩個運(yùn)算的結(jié)果,你有何發(fā)現(xiàn);

(3)根據(jù)以上方法,探索的關(guān)系,并用等式把它們表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式的常數(shù)項(xiàng)式,次數(shù)是,兩數(shù)在數(shù)軸上所對應(yīng)的點(diǎn)為AB

(1)線段AB的長=

(2)數(shù)軸上在B點(diǎn)右邊有一點(diǎn)C,點(diǎn)CA、B兩點(diǎn)的距離和為11,求點(diǎn)C在數(shù)軸上所對應(yīng)的數(shù);

(3) P、Q兩點(diǎn)分別從AB出發(fā),同時沿數(shù)軸正方向運(yùn)動,P點(diǎn)的速度是Q點(diǎn)速度的2倍,且3秒后,2OP=OQ,求點(diǎn)Q運(yùn)動的速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=4,CD=3,ABC=ACB=ADC=45°,則BD的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某游樂園有一個滑梯高度AB,高度AC3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)

(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(2m+1)x+m﹣3

(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;

(2)若函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為(0,﹣2),求m的值;

(3)若y隨著x的增大而增大,求m的取值范圖;

(4)若函數(shù)圖象經(jīng)過第一、三,四象限,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案