【題目】已知為有理數(shù),定義一種新運(yùn)算,其意義是,試根據(jù)這種運(yùn)算完成下列各題

(1)求①23;②(43)(-2)

(2)任意選擇兩個(gè)有理數(shù),分別代替,并比較兩個(gè)運(yùn)算的結(jié)果,你有何發(fā)現(xiàn);

(3)根據(jù)以上方法,探索的關(guān)系,并用等式把它們表示出來(lái).

【答案】1)①10;②-21;(2xy=yx;(3ab+aca(b+c) =a1

【解析】

(1)①根據(jù)新運(yùn)算法則計(jì)算即可;②先算43的結(jié)果,再用結(jié)果和進(jìn)行計(jì)算

(2)x,y代入新運(yùn)算計(jì)算即可.

(3)分別對(duì)兩個(gè)式子進(jìn)行計(jì)算,得出結(jié)果作差即可.

(1)23=2×3+(2+3)-1=10;43=4×3+(4+3)-1=18,18

(2)因?yàn)?/span> xy=xy +x+y)1,yx=yx +y+x)1,

發(fā)現(xiàn)有 xy=yx

(3)因?yàn)?/span> ab+ac= ab (a b) 1 ac (a c) 1 = ab ac+2a a b c 2 ,

a(b+c) = a(b c) a (b c) 1 = ab ac a b c 1

所以有 ab+aca(b+c) =a1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:y=(k﹣1)x+k+1和直線l2:y=kx+k+2,其中k為不小于2的自然數(shù).

(1)當(dāng)k=2時(shí),直線l1、l2x軸圍成的三角形的面積S2=______;

(2)當(dāng)k=2、3、4,……,2018時(shí),設(shè)直線l1、l2x軸圍成的三角形的面積分別為S2,S3,S4,……,S2018,則S2+S3+S4+……+S2018=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形中,,,,垂足分別為.

1)求證:;

2)若相交于點(diǎn),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為8cmE、F、G、H分別是AB、BC、CD、DA上的動(dòng)點(diǎn),且AE=BF=CG=DH.則四邊形EFGH面積的最小值是________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接期末考試,某中學(xué)對(duì)全校七年級(jí)學(xué)生進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成了如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給出的信息,解答下列問(wèn)題:

(1)在這次調(diào)查中,被抽取的學(xué)生的總?cè)藬?shù)為多少?

(2)請(qǐng)將表示成績(jī)類(lèi)別為的條形統(tǒng)計(jì)圖補(bǔ)充完整.

(3)在扇形統(tǒng)計(jì)圖中,表示成績(jī)類(lèi)別為優(yōu)的扇形所對(duì)應(yīng)的圓心角的度數(shù)是多少?

(4)學(xué)校七年級(jí)共有1000人參加了這次數(shù)學(xué)考試,估計(jì)該校七年級(jí)共有多少名學(xué)生的數(shù)學(xué)成績(jī)可以達(dá)到優(yōu)秀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】做大小兩個(gè)長(zhǎng)方體紙盒,尺寸如下(單位:cm

長(zhǎng)

小紙盒

大紙盒

(1) 做這兩個(gè)紙盒共用料多少?

(2) 做小紙盒比做大紙盒少用料多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程

:方程兩邊同時(shí)乘以(x+2)(x-2)(A)

(x+2)(x-2)

化簡(jiǎn)得:x-2+4x=2(x+2)….. (B)

去括號(hào)、移項(xiàng)得:x+4x-2x=4+2…(C)

解得:x=2…..(D)

原方程的解是x=2….(E)

問(wèn)題:①上述解題過(guò)程的錯(cuò)誤在第____,其原因是_____②該步改正為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,PCD上的一點(diǎn),APBP分別分別平分∠DAB和∠CBA,QPAD,AB于點(diǎn)Q.

(1)求證:APPB;

(2)如果AD=5cm,AP=8cm,那么 ABCD 的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)欲招聘一名員工,現(xiàn)有甲、乙兩人競(jìng)聘.通過(guò)計(jì)算機(jī)、語(yǔ)言和商品知識(shí)三項(xiàng)測(cè)試,他們各自成績(jī)(百分制)如下表所示:

應(yīng)試者

計(jì)算機(jī)

語(yǔ)言

商品知識(shí)

70

50

80

60

60

80

1)若商場(chǎng)需要招聘負(fù)責(zé)將商品拆裝上架的人員,對(duì)計(jì)算機(jī)、語(yǔ)言和商品知識(shí)分別賦權(quán)2,3,5,計(jì)算兩名應(yīng)試者的平均成績(jī).從成績(jī)看,應(yīng)該錄取誰(shuí)?

2)若商場(chǎng)需要招聘電腦收銀員,計(jì)算機(jī)、語(yǔ)言和商品知識(shí)成績(jī)分別占50%,30%,20%,計(jì)算兩名應(yīng)試者的平均成績(jī).從成績(jī)看,應(yīng)該錄取誰(shuí)?

查看答案和解析>>

同步練習(xí)冊(cè)答案