【題目】如圖,RtABC中,∠C=90°BE平分∠ABCAC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E,過點(diǎn)EEFBCBC的延長線于點(diǎn)F.請(qǐng)補(bǔ)全圖形后完成下面的問題:

1)求證:EF是△ABC外接圓的切線;

2)若BC=5,sinABC=,求EF的長.

【答案】1)見解析 26

【解析】

1)根據(jù)已知條件得到ABC的外接圓圓心O是斜邊AB的中點(diǎn).連接OE,根據(jù)等腰三角形的性質(zhì)和角平分線的定義得到∠1=3.求得OEBF.于是得到結(jié)論;
2)根據(jù)三角函數(shù)的定義得到.根據(jù)勾股定理得到AC=12.根據(jù)矩形的性質(zhì)即可得到結(jié)論.

1)補(bǔ)全圖形如圖所示,


∵△ABC是直角三角形,
∴△ABC的外接圓圓心O是斜邊AB的中點(diǎn).
連接OE,
OE=OB
∴∠2=3,
BE平分∠ABC,
∴∠1=2,
∴∠1=3
OEBF
EFBF,
EFOE,
EFABC外接圓的切線;
2)在RtABC中,BC=5sinABC=,

AC2+BC2=AB2
AC=12
∵∠ACF=CFE=FEH=90°,
∴四邊形CFEH是矩形.
EF=HC,∠EHC=90°
EF=HC=AC=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:

①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2>y1,則x2>4;

④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,AC=BCDBC上一點(diǎn),連接AD,將線段AD繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)D的對(duì)應(yīng)點(diǎn)EBC的延長線上。過點(diǎn)EEFAD垂足為點(diǎn)G,

1)求證:FE=AE

2)填空:=__________

3)若,求的值(用含k的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,⊙O的直徑AB和弦CD相交于點(diǎn)E,且點(diǎn)B是劣弧DF的中點(diǎn).

1)求證:EBD≌△EBF;

2)已知AE1,EB5,∠DEB30°,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長直角邊DE重合,DF=8

1)若PBC上的一個(gè)動(dòng)點(diǎn),當(dāng)PA=DF時(shí),求此時(shí)∠PAB的度數(shù);

2)將圖①中的等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)30°,點(diǎn)C落在BF上,ACBD交于點(diǎn)O,連接CD,如圖②.

①探求CDO的形狀,并說明理由;

②在圖①中,若PBC的中點(diǎn),連接FP,將等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角α= 時(shí),FP長度最大,最大值為 (直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:

;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則

其中正確的有  

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)Ay軸上,點(diǎn)Cx軸上,BCx軸,tanACO.延長AC到點(diǎn)D,過點(diǎn)DDEx軸于點(diǎn)G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經(jīng)過點(diǎn)B,和CE交于點(diǎn)F,且CFFE21.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A90°,AB3,AC4,點(diǎn)M,Q分別是邊AB,BC上的動(dòng)點(diǎn)(點(diǎn)M不與A,B重合),且MQBC,過點(diǎn)MBC的平行線MN,交AC于點(diǎn)N,連接NQ,設(shè)BQx

1)試說明不論x為何值時(shí),總有△QBM∽△ABC;

2)是否存在一點(diǎn)Q,使得四邊形BMNQ為平行四邊形,試說明理由;

3)當(dāng)x為何值時(shí),四邊形BMNQ的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB6,以AB為直徑在矩形內(nèi)作半圓,與DE相切于點(diǎn)E(如圖),延長DEBCF,若BF,則陰影部分的面積為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案