【題目】如圖,拋物線y=ax2+bx+c的頂點(diǎn)為M(﹣2,﹣4),與x軸交于A、B兩點(diǎn),且A(﹣6,0),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點(diǎn)P,使△APC的面積最大?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】
(1)解:設(shè)此函數(shù)的解析式為y=a(x+h)2+k,
∵函數(shù)圖象頂點(diǎn)為M(﹣2,﹣4),
∴y=a(x+2)2﹣4,
又∵函數(shù)圖象經(jīng)過(guò)點(diǎn)A(﹣6,0),
∴0=a(﹣6+2)2﹣4解得a= ,
∴此函數(shù)的解析式為y= (x+2)2﹣4,
即y= x2+x﹣3
(2)解:∵點(diǎn)C是函數(shù)y= x2+x﹣3的圖象與y軸的交點(diǎn),
∴點(diǎn)C的坐標(biāo)是(0,﹣3),
又當(dāng)y=0時(shí),有y= x2+x﹣3=0,
解得x1=﹣6,x2=2,
∴點(diǎn)B的坐標(biāo)是(2,0),
則SABC= |AB||OC|= ×8×3=12
(3)解:假設(shè)存在這樣的點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交AC于點(diǎn)F.

設(shè)E(x,0),則P(x, x2+x﹣3),
設(shè)直線AC的解析式為y=kx+b,
∵直線AC過(guò)點(diǎn)A(﹣6,0),C(0,﹣3),
,解得 ,
∴直線AC的解析式為y=﹣ x﹣3,
∴點(diǎn)F的坐標(biāo)為F(x,﹣ x﹣3),
則|PF|=﹣ x﹣3﹣( x2+x﹣3)=﹣ x2 x,
∴SAPC=SAPF+SCPF= |PF||AE|+ |PF||OE|
= |PF||OA|= (﹣ x2 x)×6=﹣ x2 x=﹣ (x+3)2+ ,
∴當(dāng)x=﹣3時(shí),SAPC有最大值 ,此時(shí)點(diǎn)P的坐標(biāo)是P(﹣3,﹣
【解析】根據(jù)頂點(diǎn)坐標(biāo)公式即可求得a、b、c的值,即可解題;
易求得點(diǎn)B、C的坐標(biāo),即可求得OC的長(zhǎng),即可求得△ABC的面積,即可解題;
作PE⊥x軸于點(diǎn)E,交AC于點(diǎn)F,可將△APC的面積轉(zhuǎn)化為△AFP和△CFP的面積之和,而這兩個(gè)三角形有共同的底PF,這一個(gè)底上的高的和又恰好是A、C兩點(diǎn)間的距離,因此若設(shè)設(shè)E(x,0),則可用x來(lái)表示△APC的面積,得到關(guān)于x的一個(gè)二次函數(shù),求得該二次函數(shù)最大值,即可解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)的圖像與一次函數(shù)的圖像交于點(diǎn),一次函數(shù)的圖像經(jīng)過(guò)點(diǎn),與軸的交點(diǎn)為,與軸的交點(diǎn)為

1)求一次函數(shù)的表達(dá)式;

2)二元一次方程組的解為________________;

3)當(dāng)同時(shí)成立時(shí),的取值范圍為__________;

4)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小方格都是邊長(zhǎng)為1的正方形,

1)求圖中格點(diǎn)四邊形ABCD的面積和周長(zhǎng);

2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計(jì)劃開鑿隧道A,B兩地直線貫通,經(jīng)測(cè)量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點(diǎn)A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B、C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場(chǎng),現(xiàn)甲、乙兩個(gè)工廠都想加工這批產(chǎn)品,已知甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費(fèi)用為每天 80 元,乙工廠加工費(fèi)用為每天 120 元.

1)甲、乙兩個(gè)工廠每天各能加工多少件新產(chǎn)品?

2)公司制定產(chǎn)品加工方案如下:可以由每個(gè)廠家單獨(dú)完成,也可以由兩個(gè)廠家合作完成.在加工過(guò)程中,公司派一名工程師每天到廠進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天 15 元的午餐補(bǔ)助費(fèi), 請(qǐng)你幫公司選擇一種既省時(shí)又省錢的加工方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在“漢字聽寫”大賽中,準(zhǔn)備一次性購(gòu)買若干鋼筆和筆記本(每支鋼筆的價(jià)格相同,每本筆記本的價(jià)格相同)作為優(yōu)勝者的獎(jiǎng)品,已知購(gòu)買3支鋼筆和4本筆記本共需88元,購(gòu)買4支鋼筆和5本筆記本共需114元.

(1)求購(gòu)買一支鋼筆和一本筆記本各需多少元?

(2)學(xué)校準(zhǔn)備購(gòu)買鋼筆和筆記本共80件獎(jiǎng)品,根據(jù)規(guī)定購(gòu)買的總費(fèi)用不能超過(guò)1200元,求最多可以購(gòu)買多少支鋼筆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形.延長(zhǎng)AB與DC相交于點(diǎn)G,AO⊥CD,垂足為E,連接BD,∠GBC=50°,則∠DBC的度數(shù)為( )

A.50°
B.60°
C.80°
D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案