課本中有一道作業(yè)題:

有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?

小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.

(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.

(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.


       解:(1)設(shè)矩形的邊長PN=2ymm,則PQ=ymm,由條件可得△APN∽△ABC,

=,

=,

解得y=,

∴PN=×2=(mm),

答:這個矩形零件的兩條邊長分別為mm,mm;

(2)設(shè)PN=xmm,由條件可得△APN∽△ABC,

=,

=

解得PQ=80﹣x.

∴S=PN•PQ=x(80﹣x)=﹣x2+80x=﹣(x﹣60)2+2400,

∴S的最大值為2400mm2,此時PN=60mm,PQ=80﹣×60=40(mm).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,反比例函數(shù)       和一次函數(shù)           的圖象交于

A、B兩點(diǎn). AB兩點(diǎn)的橫坐標(biāo)分別為2,-3.通過觀察圖象,

若       ,則x的取值范圍是

A.               B.  或

C.  或     D.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


(1)化簡:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將一張正方形紙片,按如圖步驟①,②,沿虛線對著兩次,然后沿③中的虛線剪去一個角,展開鋪平后的圖形是( 。

    A.         B.                                                 C.   D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把標(biāo)準(zhǔn)紙一次又一次對開,可以得到均相似的“開紙”.現(xiàn)在我們在長為2、寬為1的矩形紙片中,畫兩個小矩形,使這兩個小矩形的每條邊都與原矩形紙的邊平行,或小矩形的邊在原矩形的邊上,且每個小矩形均與原矩形紙相似,然后將它們剪下,則所剪得的兩個小矩形紙片周長之和的最大值是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


2014的相反數(shù)是

A.       B.          C.               D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)DAB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為

A.      B.     C.              D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,將△COD繞點(diǎn)O按逆時針方向旋轉(zhuǎn)得到△C1OD1,旋轉(zhuǎn)角為θ(0°<θ<90°),連接AC1、BD1AC1BD1交于點(diǎn)P.

(1)如圖1,若四邊形ABCD是正方形.

①求證:△AOC1≌△BOD1.

②請直接寫出AC1 BD1的位置關(guān)系.

(2)如圖2,若四邊形ABCD是菱形,AC=5,BD=7,設(shè)AC1=k BD1.判斷AC1BD1的位置關(guān)系,說明理由,并求出k的值.

(3)如圖3,若四邊形ABCD是平行四邊形,AC=5,BD=10,連接DD1,設(shè)AC1=kBD1.

請直接寫出k的值和              的值.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


函數(shù)中,自變量x的取值范圍是            .

查看答案和解析>>

同步練習(xí)冊答案