【題目】小明坐于堤邊垂釣,如圖①,河堤AC的坡角為30°,AC長(zhǎng)米,釣竿AO的傾斜角是60°,其長(zhǎng)為3米,若AO與釣魚(yú)線(xiàn)OB的夾角為60°,求浮漂B與河堤下端C之間的距離(如圖②).
【答案】1.5米.
【解析】
試題延長(zhǎng)OA交BC于點(diǎn)D.先由傾斜角定義及三角形內(nèi)角和定理求出在Rt△ACD中,米,CD=2AD=3米,再證明△BOD是等邊三角形,得到 米,然后根據(jù)BC=BDCD即可求出浮漂B與河堤下端C之間的距離.
試題解析:延長(zhǎng)OA交BC于點(diǎn)D.
∵AO的傾斜角是,
∴
∵
在Rt△ACD中, (米),
∴CD=2AD=3米,
又
∴△BOD是等邊三角形,
∴(米),
∴BC=BDCD=4.53=1.5(米).
答:浮漂B與河堤下端C之間的距離為1.5米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)務(wù)院辦公廳在2015年3月16日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識(shí)競(jìng)賽,各類(lèi)獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于D,延長(zhǎng)AO交⊙O于E,連接CD,CE,若CE是⊙O的切線(xiàn),解答下列問(wèn)題:
(1)求證:CD是⊙O的切線(xiàn);
(2)若BC=3,CD=4,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為C(0,﹣3)的拋物線(xiàn)y=ax2+b(a≠0)與x軸交于A,B兩點(diǎn),直線(xiàn)y=x+m過(guò)頂點(diǎn)C和點(diǎn)B.
(I)求點(diǎn)B的坐標(biāo);
(Ⅱ)求二次函數(shù)y=ax2+b(a≠0)的解析式;
(Ⅲ)拋物線(xiàn)y=ax2+b(a≠0)上是否存在點(diǎn)M,使得∠MCB=15°?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)拋擲兩枚材質(zhì)均勻的正方體骰子,
(1)通過(guò)畫(huà)樹(shù)狀圖或列表,列舉出所有向上點(diǎn)數(shù)之和的等可能結(jié)果;
(2)求向上點(diǎn)數(shù)之和為8的概率;
(3)求向上點(diǎn)數(shù)之和不超過(guò)5的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一家苗圃計(jì)劃植桃樹(shù)和柏樹(shù),根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植桃樹(shù)的利潤(rùn)(萬(wàn)元)與投資成本x(萬(wàn)元)滿(mǎn)足如圖①所示的二次函數(shù);種植柏樹(shù)的利潤(rùn)(萬(wàn)元)與投資成本x(萬(wàn)元)滿(mǎn)足如圖②所示的正比例函數(shù)=kx.
(1)分別求出利潤(rùn)(萬(wàn)元)和利潤(rùn)(萬(wàn)元)關(guān)于投資成本x(萬(wàn)元)的函數(shù)關(guān)系式;
(2)如果這家苗圃以10萬(wàn)元資金投入種植桃樹(shù)和柏樹(shù),桃樹(shù)的投資成本不低于2萬(wàn)元且不高于8萬(wàn)元,苗圃至少獲得多少利潤(rùn)?最多能獲得多少利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,5)和點(diǎn)B(m,﹣1)均在反比例函數(shù)圖象上
(1)求m,k的值;
(2)當(dāng)x滿(mǎn)足什么條件時(shí),﹣x+4>﹣;
(3)P為y軸上一點(diǎn),若△ABP的面積是△ABO面積的2倍,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E為AB邊上的一點(diǎn),點(diǎn)F為對(duì)角線(xiàn)BD上的一點(diǎn),且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖①,請(qǐng)直接寫(xiě)出AE與DF的數(shù)量關(guān)系______________;
②將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖②所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖③,若四邊形ABCD為矩形,BC=mAB,其他條件都不變,將△EBF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請(qǐng)?jiān)趫D③中畫(huà)出草圖,并求出AE′與DF′的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線(xiàn)分別交BC,AC于點(diǎn)D,E,BE交AD于點(diǎn)F,AB=AD.
(1)判斷△FDB與△ABC是否相似,并說(shuō)明理由.
(2)AF與DF相等嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com