【題目】王師傅承包了一片池塘養(yǎng)水產(chǎn)品,他用總長(zhǎng)為88m的圍網(wǎng)圍成如圖所示的5個(gè)區(qū)域,其中②③④⑤四個(gè)區(qū)域面積相等.設(shè)AH=xm,整個(gè)矩形區(qū)域的面積為ym2.
(1)求y與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),y取最大值?最大值是多少?
【答案】(1)y=﹣11x2+88x(0<x<8)(2)當(dāng)x=4時(shí),y取到最大值,最大值為176
【解析】
(1)根據(jù)四個(gè)矩形面積相等,得到矩形ABNF面積是矩形AHEF面積的2倍,可得出BH=2AH=2x,GM=2x,再結(jié)合圍網(wǎng)的總長(zhǎng)是88m表示出BC的長(zhǎng),進(jìn)而表示出y與x的關(guān)系式,并求出x的范圍即可;
(2)利用二次函數(shù)的性質(zhì)求出y的最大值,以及此時(shí)x的值即可.
(1)∵區(qū)域②③④⑤面積相等,
又∵②的長(zhǎng)是③的寬的2倍,
∴BH=2AH=2x,
∴AB=EN=CD=3x,GM=2x,
3AH+4BH+3BC=88,
即:3x+4×2x+3BC=88,
∴BC=,
∵BC>0,
∴88﹣11x>0,
∴0<x<8,
∴y=3x=﹣11x2+88x(0<x<8),
(2)原二次函數(shù)可變形為:y=﹣11(x﹣4)2+176,
故當(dāng)x=4時(shí),y取到最大值,最大值為176.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示,下列敘述正確的是( )
A. 甲乙兩地相距1200千米
B. 快車的速度是80千米∕小時(shí)
C. 慢車的速度是60千米∕小時(shí)
D. 快車到達(dá)甲地時(shí),慢車距離乙地100千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是∠BAC的平分線,∠EAD=15°,∠B=40°.
(1)求∠C的度數(shù).
(2)若:∠EAD=α,∠B=β,其余條件不變,直接寫出用含α,β的式子表示∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x2﹣2mx+2016(m為常教)的圖象上有三點(diǎn):A(x1,y1)、B(x2,y2)、C(x3,y3),其中x1=+m,x2=+m,x3=m﹣1,則y1、y2、y3的大小關(guān)系是( 。
A. y2<y3<y1 B. y3<y1<y2 C. y1<y2<y3 D. y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當(dāng)點(diǎn)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明理由
(3)若D為AB的中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品的成本是200元/件,售價(jià)是250元/件,年銷售量為10萬件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告.根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)用x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足二次函數(shù)關(guān)系:y=﹣0.001x2+0.06x+1.
(1)如果把利潤(rùn)看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(rùn)S(萬元)與廣告費(fèi)用x(萬元)的函數(shù)關(guān)系式(無需自變量的取值范圍);
(2)如果公司年投入的廣告費(fèi)不低于10萬元且不高于50萬元,求年利潤(rùn)S的最大值;
(3)若公司希望年利潤(rùn)在776萬元到908萬元之間(含端點(diǎn)),請(qǐng)從節(jié)約支出的角度直接寫出廣告費(fèi)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x﹣3.
(1)用配方法求函數(shù)圖象頂點(diǎn)坐標(biāo)、對(duì)稱軸,并寫出圖象的開口方向;
(2)在所給網(wǎng)格中建立平面直角坐標(biāo)系井直接畫出此函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接平面上四點(diǎn)得到一個(gè)四邊形,從①,②,③,④四個(gè)條件中任取其中兩個(gè),可以得出“四邊形是平行四邊形”,這一結(jié)論的情況共有( )
A.2種B.3種C.4種D.5種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面,水面上升時(shí),水面的寬度為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com