【題目】順次連接平面上四點(diǎn)得到一個(gè)四邊形,從①,②,③,④四個(gè)條件中任取其中兩個(gè),可以得出“四邊形是平行四邊形”,這一結(jié)論的情況共有(

A.2B.3C.4D.5

【答案】B

【解析】

根據(jù)平行四邊形的判定定理可得出答案.

如圖,

當(dāng)①ABCD,③∠A=C時(shí),四邊形ABCD為平行四邊形;

理由:∵ADBC,

∴∠D+C=180°,

∵∠A=C,

∴∠D+A=180°

ABCD,

∴四邊形ABCD是平行四邊形;

當(dāng)①ABCD,④∠B=D時(shí),四邊形ABCD為平行四邊形;理由:同上;

當(dāng)③∠A=C,④∠B=D時(shí),四邊形ABCD為平行四邊形;

理由:在四邊形ABCD中,∠A+B+C+D=360°,

∵∠A=C,∠B=D,

2A+2B=360°

∴∠A+B=180°

ADBC,

同理:ABDC

∴四邊形ABCD是平行四邊形;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B、Cx軸上,點(diǎn)D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),PQy軸與拋物線交于點(diǎn)Q.

(1)求經(jīng)過B、E、C三點(diǎn)的拋物線的解析式;

(2)判斷△BDC的形狀,并給出證明;當(dāng)P在什么位置時(shí),以P、O、C為頂點(diǎn)的三角形是等腰三角形,并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)若拋物線的頂點(diǎn)為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點(diǎn)P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王師傅承包了一片池塘養(yǎng)水產(chǎn)品,他用總長為88m的圍網(wǎng)圍成如圖所示的5個(gè)區(qū)域,其中②③④⑤四個(gè)區(qū)域面積相等.設(shè)AH=xm,整個(gè)矩形區(qū)域的面積為ym2

(1)求yx之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍;

(2)當(dāng)x為何值時(shí),y取最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車難問題,建筑設(shè)計(jì)師提供了樓頂停車場的設(shè)計(jì)示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);當(dāng)1x4時(shí),有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,把平行四邊形紙片沿折疊,點(diǎn)落在處,相交于點(diǎn).

1)求證:;

2)連接,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)三角形中,如果一個(gè)角是另一個(gè)角的2倍,我們稱這種三角形為倍角三角形.如圖1,倍角△ABC中,∠A=2B,A、B、C的對邊分別記為a,b,c,倍角三角形的三邊a,b,c有什么關(guān)系呢?讓我們一起來探索.

(1)我們先從特殊的倍角三角形入手研究.請你結(jié)合圖形填空:

三三角形角形

角的已知量

2

A=2B=90°

3

A=2B=60°

(2)如圖4,對于一般的倍角△ABC,若∠CAB=2CBA,CAB、CBA、C的對邊分別記為a,b,c,a,b,c,三邊有什么關(guān)系呢?請你作出猜測,并結(jié)合圖4給出的輔助線提示加以證明;

(3)請你運(yùn)用(2)中的結(jié)論解決下列問題:若一個(gè)倍角三角形的兩邊長為5,6,求第三邊長.(直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

(1)m的值;

(2)先作的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度,寫出變化后圖象的解析式;

(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),與坐標(biāo)原點(diǎn)O在同一直線上,且AO=BO,其中m,n滿足

1)求點(diǎn)A,B的坐標(biāo);

2)如圖1,若點(diǎn)M,P分別是x軸正半軸和y軸正半軸上的點(diǎn),點(diǎn)P的縱坐標(biāo)不等于2,點(diǎn)N在第一象限內(nèi),且PAPN,,求證:BMMN;

3)如圖2,作ACy軸于點(diǎn)C,ADx軸于點(diǎn)D,在CA延長線上取一點(diǎn)E,使,連結(jié)BEAD于點(diǎn)F,恰好有,點(diǎn)GCB上一點(diǎn),且,連結(jié)FG,求證:

查看答案和解析>>

同步練習(xí)冊答案