【題目】為響應(yīng)“書(shū)香學(xué)校,書(shū)香班級(jí)”的建設(shè)號(hào)召,平頂山市某中學(xué)積極行動(dòng),學(xué)校圖書(shū)角的新書(shū)、好書(shū)不斷增加.下面是隨機(jī)抽查該校若干名同學(xué)捐書(shū)情況統(tǒng)計(jì)圖:

請(qǐng)根據(jù)下列統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)此次隨機(jī)調(diào)查同學(xué)所捐圖書(shū)數(shù)的中位數(shù)是   ,眾數(shù)是   ;

2)在扇形統(tǒng)計(jì)圖中,捐2本書(shū)的人數(shù)所占的扇形圓心角是多少度?

3)若該校有在校生1600名學(xué)生,估計(jì)該校捐4本書(shū)的學(xué)生約有多少名?

【答案】14本;2本;(2108°;(3)該校捐4本書(shū)的學(xué)生約有416名.

【解析】

1)根據(jù)捐2本的學(xué)生數(shù)所占的百分比和人數(shù)可以求得本次調(diào)查的學(xué)生數(shù),從而可以得到中位數(shù)和眾數(shù);

2)根據(jù)扇形統(tǒng)計(jì)圖中的數(shù)據(jù),利用“扇形圓心角度數(shù)=360°×所占百比例”即可得出結(jié)果;

3)根據(jù)樣本估計(jì)總體的方法,利用學(xué)生總?cè)藬?shù)×捐4本書(shū)的學(xué)生人數(shù)所占的百分比可得出結(jié)果.

解:(1)本次調(diào)查的人數(shù)為:15÷30%50(人),

捐書(shū)4本的學(xué)生人數(shù)為:509157613(人),

將所捐圖書(shū)數(shù)按照從小到大的順序排列,則處在第25,26位的捐書(shū)數(shù)都為4本,

∴此次隨機(jī)調(diào)查同學(xué)所捐圖書(shū)數(shù)的中位數(shù)是4本;

根據(jù)統(tǒng)計(jì)圖可知捐2本書(shū)的人數(shù)最多,∴眾數(shù)是2本,

故答案為:4本;2本;

2)根據(jù)題意得,360°×30%108°

答:捐2本書(shū)的人數(shù)所占的扇形圓心角是108°;

3)根據(jù)題意得,1600×416(名),

答:該校捐4本書(shū)的學(xué)生約有416名.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點(diǎn)C旋轉(zhuǎn)至△A′B′C′的位置,使點(diǎn)B′落在∠ACB的角平分線(xiàn)上,A′B′與AC相交于點(diǎn)D,那么線(xiàn)段CD的長(zhǎng)等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫(xiě)出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,為邊上的中線(xiàn),點(diǎn)上,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交的延長(zhǎng)線(xiàn)于點(diǎn),點(diǎn)上,且,連接

1)依題意補(bǔ)全圖形;

2)求證:;

3)若平分,則滿(mǎn)足的等量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°

1)判斷∠D是否是直角,并說(shuō)明理由.

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD

1)發(fā)現(xiàn)問(wèn)題:若∠ABFABE,∠CDFCDE,則∠F與∠E的等量關(guān)系為   

2)探究問(wèn)題:若∠ABFABE,∠CDFCDE.猜想:∠F與∠E的等量關(guān)系,并證明你的結(jié)論.

3)歸納問(wèn)題:若∠ABFABE,∠CDFCDE.直接寫(xiě)出∠F與∠E的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在中,的中點(diǎn).

1)如果點(diǎn)在線(xiàn)段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線(xiàn)段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).

①若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,后,是否全等?請(qǐng)說(shuō)明理由

②若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,則點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使全等?

2)若點(diǎn)以第題②中的運(yùn)動(dòng)速度從點(diǎn)出發(fā),點(diǎn)以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),經(jīng)過(guò)多少時(shí)間,點(diǎn)與點(diǎn)第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線(xiàn)的函數(shù)解析式;

(2)點(diǎn)P為線(xiàn)段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線(xiàn)段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線(xiàn)y=﹣x2+bx+c的對(duì)稱(chēng)軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案