【題目】在Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點(diǎn)C旋轉(zhuǎn)至△A′B′C′的位置,使點(diǎn)B′落在∠ACB的角平分線上,A′B′與AC相交于點(diǎn)D,那么線段CD的長(zhǎng)等于______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某武警部隊(duì)在一次地震搶險(xiǎn)救災(zāi)行動(dòng)中,探險(xiǎn)隊(duì)員在相距4米的水平地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知在A處測(cè)得探測(cè)線與地面的夾角為30°,在B處測(cè)得探測(cè)線與地面的夾角為60°,求該生命跡象C所在位置的深度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積是12,AB=AC,BC=3,邊AC的垂直平分線交AC于F,交AB于E.點(diǎn)D是BC的中點(diǎn),點(diǎn)P是EF上的一個(gè)動(dòng)點(diǎn),則△PCD的周長(zhǎng)最小值是( )
A.4B.8C.7D.9.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)自然數(shù)可以表示為兩個(gè)連續(xù)奇數(shù)的立方差,那么我們就稱這個(gè)自然數(shù)為“麻辣數(shù)”.如:所以2,26均為“麻辣數(shù)”.注:立方差公式
(1)請(qǐng)判斷98和169是否為“麻辣數(shù)”,并說明理由;
(2)請(qǐng)求出在不超過2016的自然數(shù)中,所有的“麻辣數(shù)”之和為多少?寫出完整的求解過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=10,sin∠BAC=,過點(diǎn)C作CD∥AB,點(diǎn)E在邊AC上,AE=CD,聯(lián)結(jié)AD,BE的延長(zhǎng)線與射線CD、射線AD分別交于點(diǎn)F、G.設(shè)CD=x,△CEF的面積為y.
(1)求證:∠ABE=∠CAD.
(2)如圖,當(dāng)點(diǎn)G在線段AD上時(shí),求y關(guān)于x的函數(shù)解析式及定義域.
(3)若△DFG是直角三角形,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是幾何學(xué)中的明珠,充滿著魅力,千百年來,人們對(duì)它趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者,向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法:把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為a、b、c,顯然∠DAB=∠B=90°,AC⊥DE.
(1)請(qǐng)用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再通過探究這三個(gè)圖形面積之間的關(guān)系,證明:勾股定理a2+b2=c2;
(2)如圖2,鐵路上A、B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=24千米,BC=16千米,在AB上有一個(gè)供應(yīng)站P,且PC=PD,求出AP的距離;
(3)借助(2)的思考過程與幾何模型,直接寫出代數(shù)式的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過D作DE⊥BC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)作DG⊥AB交⊙O于G,垂足為F,若∠A=30°,AB=8,求弦DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“書香學(xué)校,書香班級(jí)”的建設(shè)號(hào)召,平頂山市某中學(xué)積極行動(dòng),學(xué)校圖書角的新書、好書不斷增加.下面是隨機(jī)抽查該校若干名同學(xué)捐書情況統(tǒng)計(jì)圖:
請(qǐng)根據(jù)下列統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)此次隨機(jī)調(diào)查同學(xué)所捐圖書數(shù)的中位數(shù)是 ,眾數(shù)是 ;
(2)在扇形統(tǒng)計(jì)圖中,捐2本書的人數(shù)所占的扇形圓心角是多少度?
(3)若該校有在校生1600名學(xué)生,估計(jì)該校捐4本書的學(xué)生約有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com