【題目】在△ABC中,AB=AC=10,sin∠BAC=,過點C作CD∥AB,點E在邊AC上,AE=CD,聯(lián)結AD,BE的延長線與射線CD、射線AD分別交于點F、G.設CD=x,△CEF的面積為y.
(1)求證:∠ABE=∠CAD.
(2)如圖,當點G在線段AD上時,求y關于x的函數(shù)解析式及定義域.
(3)若△DFG是直角三角形,求△CEF的面積.
【答案】(1)見解析;(2)y=(0<x≤5-5);(3)若△DFG是直角三角形,則△CEF的面積為15或.
【解析】
(1)由CD∥AB知∠BAC=∠ECD,結合AE=CD,AB=AC證△DAC≌△EBA即可得;
(2)作EH⊥AB,先表示出S△ABE=ABEH=3x,再證∴△CEF∽△AEB,得=()2,據(jù)此可得答案;
(3)由∠DFG=∠EBA<∠ABC知∠DFG不可能為直角,從而分∠DGF=90°和∠GDF=90°兩種情況分別求解.
(1)∵CD∥AB,
∴∠BAC=∠ECD,
又∵AE=CD,AB=AC,
∴△DAC≌△EBA(SAS),
∴∠ABE=∠CAD;
(2)過點E作EH⊥AB,垂足為H,
由題意知CE=AC-AE=10-x,EH=AEsin∠CAB=x,
∴AH=x,
則S△ABE=ABEH=×10×x=3x,
∵CF∥BA,
∴△CEF∽△AEB,
∴=()2,即=,
∴y=(0<x≤5-5);
(3)∵∠DFG=∠EBA<∠ABC,
∴∠DFG不可能為直角,
①當∠DGF=90°時,∠EGA=90°,
由∠GAE=∠GBA知△GAE∽△GBA,
∴tan∠GBA===,
在Rt△EHB中,tan∠GBA===,
∴=,
解得:x=0(舍)或x=5,
∴S△CEF==15;
②當∠GDF=90°時,∠BAG=90°,
由①知△GAE∽△GBA,
則∠AEB=∠GEA=90°,
∴BE=ABsin∠BAC=10×=6,AE==8,CE=AC-AE=2,
由△CEF∽△AEB知=,即=,
則EF=,
∴S△CEF=×EF×CE=×2×=;
綜上所述,若△DFG是直角三角形,則△CEF的面積為15或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,AB=14,AD= 4 , CD=7.直線l經(jīng)過A,D兩點,且sin∠DAB= . 動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點P作PM垂直于AB,與折線A→D→C相交于點M,當P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設點P,Q運動的時間為t秒(t>0),△MPQ的面積為S.
(1)求腰BC的長;
(2)當Q在BC上運動時,求S與t的函數(shù)關系式;
(3)在(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;
(4)隨著P,Q兩點的運動,當點M在線段DC上運動時,設PM的延長線與直線l相交于點N,試探究:當t為何值時,△QMN為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地,兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關系如圖所示,則下列說法正確的是( )
①當分鐘時甲乙兩人相遇;
②甲的速度為40米/分鐘;
③乙的速度為50米/分鐘;
④乙到達目的地時,甲離目的地的距離為800米.
A.①②B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)重慶軌道集團提供的日客運量統(tǒng)計,2019年2月21日重慶軌道交通首次日客運量突破300萬乘次,其中近期開通的重慶軌道交通環(huán)線日客運量為21.5萬乘次.據(jù)了解,某工作日上午7點至9點軌道環(huán)線四公里站有20列列車進出站,每列車進出站時,將上車和下車的人數(shù)記錄下來,各得到20個數(shù)據(jù),并將數(shù)據(jù)進行整理,繪制成了如下兩幅不完整統(tǒng)計圖.(數(shù)據(jù)分組為:組:,組:,組:,組:,組:)
I.上車人數(shù)在組的是:190,190,191,192,193,193,195,196,198,198,198,198;
II.上車人數(shù)的平均數(shù)、中位數(shù)如下表:
平均數(shù) | 中位數(shù) | |
上車人數(shù)(人) | 194 | a |
根據(jù)以上信息,回答下列問題:
(1)請補全頻數(shù)分布直方圖;
(2)表中________,扇形統(tǒng)計圖中_________,扇形統(tǒng)計圖中組所在的圓心角度數(shù)為________度;
(3)請利用平均數(shù),估算一周內5個工作日的上午7點至9點重慶軌道環(huán)線四公里站的上車總人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點C旋轉至△A′B′C′的位置,使點B′落在∠ACB的角平分線上,A′B′與AC相交于點D,那么線段CD的長等于______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一艘漁輪在海上C處作業(yè)時,發(fā)生故障,立即向搜救中心發(fā)出救援信號,此時搜救中心的兩艘救助輪救助一號和救助二號分別位于海上A處和B處,B在A的正東方向,且相距100里,測得地點C在A的南偏東60,在B的南偏東30方向上,如圖所示,若救助一號和救助二號的速度分別為40里/小時和30里/小時,問搜救中心應派那艘救助輪才能盡早趕到C處救援?(≈1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過點C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD.
(1)發(fā)現(xiàn)問題:若∠ABF=∠ABE,∠CDF=∠CDE,則∠F與∠E的等量關系為 .
(2)探究問題:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F與∠E的等量關系,并證明你的結論.
(3)歸納問題:若∠ABF=∠ABE,∠CDF=∠CDE.直接寫出∠F與∠E的等量關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com