【題目】已知:ADABC的高,且BDCD

(1)如圖1,求證:∠BADCAD;

(2)如圖2,點EAD上,連接BE,將ABE沿BE折疊得到ABE,ABAC相交于點F,若BEBC,求∠BFC的大;

(3)如圖3,在(2)的條件下,連接EF,過點CCGEF,交EF的延長線于點G,若BF=10,EG=6,求線段CF的長.

【答案】(1)證明見解析;(2)BFC=60°;(3)CF=8.

【解析】

(1)易得ABAC,BADCAD.

(2) 連接EC, 可證得BCE是等邊三角形,BEC=60°,BED=30°且由翻折的性質可知:ABEABEABF,可得BFCFAB+FBA=2(BAE+ABE)=2BED=60°.

(3) 連接EC,作EHABH,ENACN,EMBAM, 可證得RtEMBRtENC,

BMCNBFFMCF+FN,可得CF的值.

1)證明:如圖1中,

BDCDADBC,

ABAC

∴∠BAD=∠CAD

2)解:如圖2中,連接EC

BDBCBDCD,

EBEC,

又∵EBBC

BEECBC,

∴△BCE是等邊三角形,

∴∠BEC60°,

∴∠BED30°,

由翻折的性質可知:∠ABE=∠ABEABF,

∴∠ABF2ABE,由(1)可知∠FAB2BAE,

∴∠BFC=∠FAB+FBA2(∠BAE+ABE)=2BED60°

3)解:如圖3中,連接EC,作EHABH,ENACN,EMBAM

∵∠BAD=∠CAD,∠ABE=∠ABE,

EHENEM

∴∠AFE=∠EFB,

∵∠BFC60°,

∴∠AFE=∠BFE60°

RtEFM中,∵∠FEM90°60°30°,

EF2FM,設FMm,則EF2m

FGEGEF62m,

易知:FNEFmCF2FG124m,

∵∠EMB=∠ENC90°,EBEC,EMEN,

RtEMBRtENCHL),

BMCN,

BFFMCF+FN,

10m124m+m,

m1,

CF1248

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】同時拋擲兩枚材質均勻的正方體骰子,

1)通過畫樹狀圖或列表,列舉出所有向上點數(shù)之和的等可能結果;

2)求向上點數(shù)之和為8的概率

3)求向上點數(shù)之和不超過5的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點,以點P為圓心、1個單位長度為半徑作⊙P,當⊙P與直線y=0相切時,點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中拋物線y=(x+1)(x3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得ABC1、ABC2ABC3的面積都等于m,則m的值是(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCO放在直角坐標系中,其中頂點B的坐標為(10, 8),EBC邊上一點將ABE沿AE折疊,點B剛好與OC邊上點D重合,過點E的反比例函數(shù)y=的圖象與邊AB交于點F, 則線段AF的長為( )

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC的垂直平分線分別交BCAC于點D,E,BEAD于點FAB=AD

1)判斷FDBABC是否相似,并說明理由.

2AFDF相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十九大報告提出了我國將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問題成為焦點,為了調查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的一種統(tǒng)計圖表.

對霧霾了解程度的統(tǒng)計表

對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結合統(tǒng)計圖表,回答下列問題:

1)統(tǒng)計表中:m   n   ;

2)請在圖1中補全條形統(tǒng)計圖;

3)請問在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去學校食堂就餐,經(jīng)常會在一個買菜窗口前等待,經(jīng)調查發(fā)現(xiàn),同學的舒適度指數(shù)y與等時間x(分)之間滿足反比例函數(shù)關系,如下表:

等待時間x

1

2

5

10

20

舒適度指數(shù)y

100

50

20

10

5

已知學生等待時間不超過30分鐘

(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍.

(2)若等待時間8分鐘時,求舒適度的值;

(3)舒適度指數(shù)不低于10時,同學才會感到舒適.請說明,作為食堂的管理員,讓每個在窗口買菜的同學最多等待多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12)如圖,已知拋物線yax2+bx2(a≠0)x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(23),B(40)

(1)求拋物線的解析式;

(2)已知點M為拋物線上一動點,且在第三象限,順次連接點BM、C,求△BMC面積的最大值;

(3)(2)中△BMC面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案