【題目】如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫(xiě)下表:
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個(gè)數(shù) | 4 | 6 |
|
| … |
|
(2)原正方形能否被分割成2019個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說(shuō)明理由.
【答案】(1) 8,10 ,2n+2;(2)不行,理由見(jiàn)解析.
【解析】
(1)由圖形中三角形的個(gè)數(shù),并觀察發(fā)現(xiàn),每多一個(gè)點(diǎn),三角形的個(gè)數(shù)增加2,然后據(jù)此規(guī)律填表即可;
(2)根據(jù)(1)中規(guī)律,列式求解,如果n是整數(shù),則能分割,如果不是整數(shù),則不能分割.
解:(1)有1個(gè)點(diǎn)時(shí),內(nèi)部分割成4個(gè)三角形;
有2個(gè)點(diǎn)時(shí),內(nèi)部分割成6=4+2個(gè)三角形;
有3個(gè)點(diǎn)時(shí),內(nèi)部分割成8=4+2×2個(gè)三角形;
有4個(gè)點(diǎn)時(shí),內(nèi)部分割成10=4+2×3個(gè)三角形;…
以此類推,有n個(gè)點(diǎn)時(shí),內(nèi)部分割成4+2×(n-1)=(2n+2)個(gè)三角形,
補(bǔ)全表格如下:
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個(gè)數(shù) | 4 | 6 | 8 | 10 | … | 2n+2 |
(2)不能,
由(1)知2n+2=2019,
解得:n=1008,不是整數(shù),所以不能分割成2019個(gè)三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是【 】
A.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)大
B.從1,2,3,4,5,中隨機(jī)抽取一個(gè)數(shù),是偶數(shù)的可能性比較大
C.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3
D.若某種游戲活動(dòng)的中獎(jiǎng)率是30%,則參加這種活動(dòng)10次必有3次中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,點(diǎn)A,B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB.
(2)如圖2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的結(jié)論,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù)計(jì)算圖中實(shí)線所圍成的圖形的面積S= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在坐標(biāo)平面內(nèi),點(diǎn)O是坐標(biāo)原點(diǎn),A(0,6)、B(2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點(diǎn)O與點(diǎn)C對(duì)應(yīng)。
(1)求點(diǎn)C的坐標(biāo);
(2)動(dòng)點(diǎn)F從點(diǎn)O出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿折線O—A—C向終點(diǎn)C運(yùn)動(dòng),設(shè)△FOB的面積為S(S≠0),點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒,求S與t的關(guān)系式,并直接寫(xiě)出t的取值范圍;
(3)在(2)的條件下,過(guò)點(diǎn)B作x軸垂線,交AC于點(diǎn)E,在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),△BEF是以BE為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,G是BC的中點(diǎn),過(guò)A、D、G三點(diǎn)的圓O與邊AB、CD分別交于點(diǎn)E、點(diǎn)F,給出下列說(shuō)法:(1)AC與BD的交點(diǎn)是圓O的圓心;(2)AF與DE的交點(diǎn)是圓O的圓心;(3)BC與圓O相切,其中正確說(shuō)法的個(gè)數(shù)是( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點(diǎn)A1在邊CD上.
(1)若m=2,n=1,求在旋轉(zhuǎn)過(guò)程中,點(diǎn)D到點(diǎn)D1所經(jīng)過(guò)路徑的長(zhǎng)度;
(2)將矩形A1BC1D1繼續(xù)繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)得到矩形A2BC2D2,點(diǎn)D2在BC的延長(zhǎng)線上,設(shè)邊A2B與CD交于點(diǎn)E,若=﹣1,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;②(a+c)2<b2;③當(dāng)﹣1<x<3時(shí),y<0;④當(dāng)a=1時(shí),將拋物線先向上平移2個(gè)單位,再向右平移1個(gè)單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( )
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P(m,n)為線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,問(wèn):
①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍;
②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無(wú)限循環(huán)小數(shù),事實(shí)上,所有的有理數(shù)都可以化為分?jǐn)?shù)形式(整數(shù)可看作分母為1的分?jǐn)?shù)),那么無(wú)限循環(huán)小數(shù)如何表示為分?jǐn)?shù)形式呢?請(qǐng)看以下示例:
例:將化為分?jǐn)?shù)形式
由于=0.777…,設(shè)x=0.777…①
則10x=7.777…②
②﹣①得9x=7,解得x=,于是得=.
同理可得=,=1+=1+,
根據(jù)以上閱讀,回答下列問(wèn)題:(以下計(jì)算結(jié)果均用最簡(jiǎn)分?jǐn)?shù)表示)
(基礎(chǔ)訓(xùn)練)
(1)= ,= ;
(2)將化為分?jǐn)?shù)形式,寫(xiě)出推導(dǎo)過(guò)程;
(能力提升)
(3)= ,= ;
(注:=0.315315…,=2.01818…)
(探索發(fā)現(xiàn))
(4)①試比較與1的大。 1(填“>”、“<”或“=”)
②若已知=,則= .
(注:=0.285714285714…)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com