【題目】某化肥廠去年四月份生產(chǎn)化肥500噸,因管理不善,五月份的產(chǎn)量減少了,從六月起強化管理,該廠產(chǎn)量逐月上升,七月份產(chǎn)量達到648噸.

該廠五月份的產(chǎn)量為______噸;直接填結(jié)果

求六、七兩月產(chǎn)量的平均增長率.

【答案】(1)450;(2)20%.

【解析】分析:(1)利用四月份的生產(chǎn)量×(1-10%)可得五月份的產(chǎn)量;

(2)設(shè)六、七兩個月的產(chǎn)量平均增長率為x,根據(jù)題意可得:五月份的生產(chǎn)量×(1+增長率)=六月份的產(chǎn)量,再用六月份的生產(chǎn)量×(1+增長率)=七月份的產(chǎn)量,即五月份的產(chǎn)量×(1+增長率)2=七月份的產(chǎn)量.

詳解:(1)500(1-10%)=450(噸),

故答案為:450;

(2)設(shè)六、七兩個月的產(chǎn)量平均增長率為x,依題意得:

450(1+x)2=648,

(1+x)2=1.44,

解得x1=0.2=20%,x2=-2.2=-220%(不合題意舍去),

答:六、七兩月產(chǎn)量的平均增長率為20%.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】省教育廳決定在全省中小學開展“關(guān)注校車、關(guān)愛學生”為主題的交通安全教育宣傳周活動,某中學為了了解本校學生的上學方式,在全校范圍內(nèi)隨機抽查了部分學生,將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計圖(如圖所示),請根據(jù)圖中提供的信息,解答下列問題.
(1)m=%,這次共抽取名學生進行調(diào)查;并補全條形圖;
(2)在這次抽樣調(diào)查中,采用哪種上學方式的人數(shù)最多?
(3)如果該校共有1500名學生,請你估計該校騎自行車上學的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系xoy中,拋物線y=(m﹣1)x2﹣(3m﹣4)x﹣3與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸是經(jīng)過(1,0)且與y軸平行的直線,點P是拋物線上的一點,點Q是y軸上一點;

(1)求拋物線的函數(shù)關(guān)系式;
(2)若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)若tan∠PCB= ,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,點D、E分別是BCAD的中點,CE的延長線于則四邊形AFBD的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD平分BACBC于點D,AEBC邊上的高,ADB=106°,C=56°,求DAEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車間的甲、乙兩名工人分別同時生產(chǎn)500只同一型號的零件,他們生產(chǎn)的零件y(只)與生產(chǎn)時間x(分)的函數(shù)關(guān)系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:
(1)甲每分鐘生產(chǎn)零件只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件 只;
(2)若乙提高速度后,乙的生產(chǎn)速度是甲的2倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件y(只)與生產(chǎn)時間x(分)的函數(shù)關(guān)系式;
(3)當兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AD=4cm,點E,F(xiàn)分別是CD和AB的中點,現(xiàn)將這張紙片折疊,使點B落在EF上的點G處,折痕為AH,若HG延長線恰好經(jīng)過點D,則CD的長為(
A.2cm
B.2 cm
C.4cm
D.4 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答下列各題

(1)化簡并求值:-(3a2-4ab)+[a2-(a+2ab)] ,其中a=-2,b=1

(2)已知多項式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值與字母x的取值無關(guān),求a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當點EAD邊上移動時,折痕的端點P、Q也隨之移動;

①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.

查看答案和解析>>

同步練習冊答案