已知x2+bx+c(b、c為整數(shù))是3(x4+6x2+25)及3x4+4x2+28x+25的公因式,求b、c的值.
考點:公因式
專題:
分析:根據(jù)二次三項式x2+bx+c既是x4+6x2+25的一個因式,也是3x4+4x2+28x+5的一個因式,我們可得到x2+bx+c也必定是x4+6x2+25與3x4+4x2+28x+5差的一個因式.通過做差,就實現(xiàn)了降次,最高次冪成為2,與二次三項式x2+bx+c關(guān)于x的各次項系數(shù)對應(yīng)相等,解得b、c的值.
解答:解:∵二次三項式x2+bx+c既是x4+6x2+25的一個因式,也是3x4+4x2+28x+5的一個因式,
∴也必定是x4+6x2+25與3x4+4x2+28x+5差的一個因式,而3(x4+6x2+25)-(3x4+4x2+28x+5)=14(x2-2x+5),
∴x2-2x+5=x2+bx+c,
∴b=-2,c=5.
點評:本題考查因式分解.解決本題的關(guān)鍵是通過作差,實現(xiàn)了降次,再根據(jù)兩代數(shù)式相等必是x的各次項系數(shù)對應(yīng)相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商店在某一時間以每件180元的價格賣出兩件衣服,其中一件盈利20%,另一件虧損10%,該商店賣出這兩件衣服共盈利
 
元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點圴在格點上,其中A(3,2)、B(1,3)
(1)畫出△OAB關(guān)于x軸對稱的△OA1B1,并寫出點A1的坐標(biāo);
(2)畫出△OAB繞點B順時針旋轉(zhuǎn)90°后得到的△A2BO2,并寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)為了預(yù)測本校應(yīng)屆畢業(yè)生“一分鐘跳繩”項目考試情況,從九年級隨機抽取部分女生進(jìn)行該項目測試,并以測試數(shù)據(jù)為樣本,繪制出如圖所示的部分頻數(shù)分布直方圖(從左到右依次為六個小組,每小組含最小值,不含最大值)和扇形統(tǒng)計圖.

根據(jù)統(tǒng)計圖提供的信息解答下列問題:
(1)補全頻數(shù)分布直方圖,并指出這個樣本的中位數(shù)落在第
 
小組;
(2)若測試九年級女生“一分鐘跳繩”次數(shù)不低于130次的成績?yōu)閮?yōu)秀,本校九年級女生共有260人,請估計該校九年級女生“一分鐘跳繩”成績的優(yōu)秀人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若∠1和∠2互為余角,且∠1=40°,則∠2=
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點D在點O的北偏西30°方向,點E在點O的北偏東50°方向,那么∠DOE的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

綜合實踐課上,小明所在的小組要測量府南河的寬度.如圖所示是府南河的一段,兩岸AB∥CD,河岸AB上有一排大樹,相鄰兩顆大樹之間的距離均為10米,小明先用測角儀在河岸CD的M處測得∠α=30°,然后沿河岸走50米到達(dá)N點,測得∠β=60°.請你根據(jù)這些數(shù)據(jù)幫小明他們算出河寬FR.(結(jié)果保留兩位有效數(shù)字,
3
=1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)要在三角地ABC內(nèi)建一中心醫(yī)院,使醫(yī)院到A、B兩個居民小區(qū)的距離相等,并且到公路AB和AC的距離也相等,請確定這個中心醫(yī)院的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明和小紅在交流合作學(xué)習(xí)中發(fā)現(xiàn):
1+
1
3
=2
1
3
,
2+
1
4
=3
1
4
,
3+
1
5
=4
1
5
,…按照此規(guī)律請你猜想寫出第n個等式(n為自然數(shù),且n≥1)為
 

查看答案和解析>>

同步練習(xí)冊答案