【題目】在邊長為1的小正方形網(wǎng)格中,AOB的頂點均在格點上.

(1)B點關(guān)于y軸的對稱點坐標為 ;

(2)將AOB向左平移3個單位長度,再向上平移2個單位長度得到A1O1B1,請畫出A1O1B1;

(3)在(2)的條件下,AOB邊AB上有一點P的坐標為(a,b),則平移后對應(yīng)點P1的坐標為

【答案】(1)(﹣3,2)(2見解析3)(a﹣3,b+2)

【解析】

試題分析:(1)根據(jù)坐標系可得B點坐標,再根據(jù)關(guān)于y軸對稱的對稱點的坐標特點:橫坐標相反,縱坐標不變可得答案;

(2)首先確定A、B、C三點平移后的對應(yīng)點位置,然后再連接即可;

(3)根據(jù)AOB的平移可得P的坐標為(a,b),平移后橫坐標﹣3,縱坐標+2.

解:(1)B點關(guān)于y軸的對稱點坐標為(﹣3,2),

故答案為:(﹣3,2);

(2)如圖所示:

(3)P的坐標為(a,b)平移后對應(yīng)點P1的坐標為(a﹣3,b+2).

故答案為:(a﹣3,b+2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤,準備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把二次函數(shù)y=a(x-h)2+k的圖象先向左平移2個單位,再向上平移4個單位,得到二次函數(shù)y= (x+1)2-1的圖象.

1試確定a,h,k的值;

2指出二次函數(shù)y=a(x-h)2+k的開口方向,對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1kx+by2=﹣4x+a的圖象如圖所示,且A0,4),C(﹣2,0).

1)由圖可知,不等式kx+b0的解集是   ;

2)若不等式kx+b>﹣4x+a的解集是x1

①求點B的坐標;

②求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點P,點P在第一象限.PAx軸于點APBy軸于點B.一次函數(shù)的圖象分別交軸、軸于點CD,且SPBD=4

1)求點D的坐標;

2)求一次函數(shù)與反比例函數(shù)的解析式;

3)根據(jù)圖象寫出當(dāng)時,一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)佳節(jié),歷來有吃粽子的習(xí)俗.我市某食品加工廠,擁有A、B兩條粽子加工生產(chǎn)線.原計劃A生產(chǎn)線每小時加工粽子個數(shù)是B生產(chǎn)線每小時加工粽子個數(shù)的

1)若A生產(chǎn)線加工4000個粽子所用時間與B生產(chǎn)線加工4000個粽子所用時間之和恰好為18小時,則原計劃A、B生產(chǎn)線每小時加工粽子各是多少個?

2)在(1)的條件下,原計劃A、B生產(chǎn)線每天均加工a小時,由于受其他原因影響,在實際加工過程中,A生產(chǎn)線每小時比原計劃少加工100個,B生產(chǎn)線每小時比原計劃少加工50個.為了盡快將粽子投放到市場,A生產(chǎn)線每天比原計劃多加工3小時,B生產(chǎn)線每天比原計劃多加工a小時.這樣每天加工的粽子不少于6300個,求a的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線ABCD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE41,則∠AOF等于( 。

A. 130°B. 120°C. 110°D. 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點Px,y)的坐標滿足方程組

1)求點P的坐標(用含m,n的式子表示);

2)若點P在第四象限,且符合要求的整數(shù)m只有兩個,求n的取值范圍;

3)若點Px軸的距離為5,到y軸的距離為4,求m,n的值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標系中,A0,﹣1)、B(﹣2,0C40

1)求△ABC的面積;

2)在y軸上是否存在一個點D,使得△ABD為等腰三角形,若存在,求出點D坐標;若不存,說明理由.

查看答案和解析>>

同步練習(xí)冊答案