如圖,,平面內(nèi)可以畫幾個(gè)以A、B為兩個(gè)頂點(diǎn)的正方形?分別寫出這幾個(gè)正方形另外兩點(diǎn)的坐標(biāo).

答案:
解析:

  可以畫三個(gè).

  (1),

  (2),

  (3)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,l1與l2是同一平面內(nèi)的兩條相交直線,它們有一個(gè)交點(diǎn).如果在這個(gè)平面內(nèi),再畫第三條直線l3,那么這三條直線最多可有
 
個(gè)交點(diǎn);如果在這個(gè)平面內(nèi)再畫第4條直線l4,那么這4條直線最多可有
 
個(gè)交點(diǎn).由此,我們可以猜想:在同一平面內(nèi),6條直線最多可有
 
個(gè)交點(diǎn),n(n為大于1的整數(shù))條直線最多可有
 
個(gè)交點(diǎn)(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,已知:△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數(shù)解析式;
(2)在△AOB內(nèi)可以作一個(gè)正方形CDEF,使它的三個(gè)頂點(diǎn)分別落在邊AO、AB上,E、F兩個(gè)頂點(diǎn)落在OB上,請(qǐng)求出這個(gè)正方形四個(gè)頂瞇的坐標(biāo),并在圖中畫出這個(gè)正方形;
(3)連接OC,在線段OC上任取一點(diǎn)P,過(guò)P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點(diǎn),過(guò)M作OB邊的垂線與OB交于H;你有什么發(fā)現(xiàn)?請(qǐng)寫出來(lái),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如圖1),請(qǐng)用直尺(沒有刻度)和圓規(guī),作一個(gè)平行四邊形,使它的三個(gè)頂點(diǎn)恰好是△ABC的三個(gè)頂點(diǎn)(只需作一個(gè),不必寫作法,但要保留作圖痕跡)
精英家教網(wǎng)
(3)根據(jù)題意,完成下列填空:
如圖2,L1與L2是同一平面內(nèi)的兩條相交直線,它們有1個(gè)交點(diǎn),如果在這個(gè)平面內(nèi),再畫第3直線L3,那么這3條直線最多可有
 
個(gè)交點(diǎn);如果在這個(gè)平面內(nèi)再畫第4條直線L4,那么這4條直線最多可有
 
個(gè)交點(diǎn).由此我們可以猜想:在同一平面內(nèi),6條直線最多可有
 
個(gè)交點(diǎn),n( n為大于1的整數(shù))條直線最多可有
 
個(gè)交點(diǎn)(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系.
第一步:數(shù)軸上兩點(diǎn)連線的中點(diǎn)表示的數(shù).自己畫一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線段AB的中點(diǎn)M表示的數(shù)是
1
1
. 再試幾個(gè),我們發(fā)現(xiàn):數(shù)軸上連接兩點(diǎn)的線段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù).
第二步;平面直角坐標(biāo)系中兩點(diǎn)連線的中點(diǎn)的坐標(biāo)(如圖①)為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線段AB的中點(diǎn)M,分別作A、B到x軸的垂線段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(
x1+x2
2
x1+x2
2
,
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以.我們的結(jié)論是:平面直角坐標(biāo)系中連接兩點(diǎn)的線段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù).
第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)在平面直角坐標(biāo)系中畫一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對(duì)角線交點(diǎn)Q的坐標(biāo)可以表示為Q(
x1+x3
2
x1+x3
2
,
y1+y3
2
y1+y3
2
),也可以表示為Q(
x2+x4
2
x2+x4
2
,
y2+y4
2
y2+y4
2
 ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的
和相等
和相等

查看答案和解析>>

同步練習(xí)冊(cè)答案