【題目】如圖示,以正方形的點為坐標(biāo)原點建立平面直角坐標(biāo)系,其中線段在軸上,線段在軸上,其中正方形的周長為24.
(1)直接寫出,兩點的坐標(biāo).
(2)若與軸重合的直線以每秒1個單位長度的速度由軸向右平移,移動至與所在的直線重合時停止.在移動過程中直線與、交點分別為點和點.問:運動多長時間時,長方形的周長與長方形的周長之比為5:4.
(3)在(2)的條件下,若直線上有一點,連接、,恰好滿足.求出的大小.
【答案】(1)B(6,6),C(6,0);(2)運動4秒時,長方形的周長與長方形的周長之比為5:4;(3)為270°或90°時恰好.
【解析】
(1)根據(jù)正方形的性質(zhì)即可得到OA、OC的長度由此得到點的坐標(biāo);
(2)設(shè)移動t秒,根據(jù)平移得到AN=OM=t,MN=OA=6,根據(jù)長方形的周長與長方形的周長之比為5:4列出方程求解即可得到答案;
(3)分兩種情況:點E在AB上方或下方時,分別畫圖,根據(jù)垂直的定義及正方形的性質(zhì)求值即可.
(1)∵四邊形ABCO是正方形,且周長是24,
∴OA=OC=AB=BC=6,AB⊥OA,BC⊥OC,
∴B(6,6),C(6,0);
(2)設(shè)移動t秒,
∵與軸重合的直線以每秒1個單位長度的速度由軸向右平移,
∴AN=OM=t,MN=OA=6,
∴BN=CM=6-t,
∵長方形的周長與長方形的周長之比為5:4,
∴4(2t+12)=5(12-2t+12),
解得t=4,
∴當(dāng)直線l運動4秒時,長方形的周長與長方形的周長之比為5:4;
(3)當(dāng)點E在AB上方時,如圖,
∵,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∵四邊形ABCO是正方形,
∴∠OAB=∠ABC=90°,
∴=∠OAB+∠EAB+∠ABC+∠EBA=270°;
當(dāng)點E在AB下方時,如圖,
∵,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∵四邊形ABCO是正方形,
∴∠OAB=∠ABC=90°,
∴=∠OAB-∠EAB+∠ABC-∠EBA=90°;
綜上,為270°或90°時恰好.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)學(xué)習(xí)中整體思想與轉(zhuǎn)化思想是我們常用到的數(shù)學(xué)思想.
圖(1)中,求∠A+∠B+∠C+∠D+∠E的度數(shù)等于多少時,我們可以連接CD,利用三角形的內(nèi)角和則有∠B+∠E=∠ECD+∠BDC,這樣∠A、∠B、∠C、∠D、∠E的和就轉(zhuǎn)化到同一個△ACD中,即∠A+∠B+∠C+∠D+∠E=_____.
圖(2)中∠A+∠B+∠C+∠D+∠E的度數(shù)等于______.
圖(3)中∠A+∠B+∠C+∠D+∠E的度數(shù)等于________.
圖(4)中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來: .
(3)利用(2)中結(jié)論解決下面的問題:如圖2,兩個正方形邊長分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,現(xiàn)在我們把它改為橫排,如圖1、圖2,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)的系數(shù)與相應(yīng)的常數(shù)項,把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來就是 類似地,圖2所示的算籌圖我們可以用方程組形式表述為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,,.
求證:
證明:因為(已知)
所以(_______)
所以__________.(兩直線平行,內(nèi)錯角相等)
因為.(已知)
所以__________.(_______)
所以.(_______)
所以.(等式性質(zhì)1)
即.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為線段上一動點,分別過點作,,連接.已知,設(shè).
(1)用含的代數(shù)式表示的值;
(2)探究:當(dāng)點滿足什么條件時,的值最小?最小值是多少?
(3)根據(jù)(2)中的結(jié)論,請構(gòu)造圖形求代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點,點B在對稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點P在x軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某公司員工的年收入情況,隨機抽查了公司部分員工年收入情況并繪制如圖所示統(tǒng)計圖.
(1)請按圖中數(shù)據(jù)補全條形圖;
(2)由圖可知員工年收入的中位數(shù)是 ,眾數(shù)是 ;
(3)估計該公司員工人均年收入約為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com