【題目】如圖,在菱形ABCD中,∠B= 60°.
(1)如圖①.若點(diǎn)E、F分別在邊AB、AD上,且BE=AF,求證:△CEF是等邊三角形.
(2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊AB、AD上,且∠CEF=60°時(shí),△CEF也是等邊三角形,
并通過(guò)畫圖驗(yàn)證了猜想;小麗通過(guò)探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了△CEF是等邊三角形.請(qǐng)你根據(jù)小倩的方法,寫出完整的證明過(guò)程.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)易證△BEC≌△AFC,即可得證;(2)先證得△BEM是等邊三角形,再證△MEC≌AFE,即可EC=EF,再由∠CEF=60°即可證明.
(1)因?yàn)樗倪呅?/span>ABCD是菱形,所以AB= BC=CD=AD.
因?yàn)椤?/span>B=60°,所以△ABC,△ADC都是等邊三角形.
所以BC=AC,∠B=∠CAF=∠ACB=60°,
又因?yàn)?/span>BE=AF,所以.△BEC≌△AFC(SAS),所以CE=CF,∠ECF=∠BCA=60°
所以△ECF是等邊三角形,
(2) 因?yàn)?/span>BE=BM,∠B= 60°
所以△BEM是等邊三角形.
所以∠EMB=∠BEM=60°,∠EMC=∠AEM=120°
因?yàn)?/span>AB= BC,∠EAF120°,所以.AE=CM,∠EAF=∠EM.
因?yàn)椤?/span>FEC=60°,所以∠AEF+∠CEM=60°.
又因?yàn)椤?/span>CEM+∠ECM=60°所以∠AEF=∠ECM.
所以△MEC≌AFE(ASA),所以EC=EF.
又因?yàn)椤?/span>FEC=60°,所以△EFC是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0.
(1)請(qǐng)求出a、b、c的值;
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到2之間運(yùn)動(dòng)時(shí)(即0≤x≤2時(shí)),請(qǐng)化簡(jiǎn)式子:|x+1|-|x-1|+2|x+5|(請(qǐng)寫出化簡(jiǎn)過(guò)程)
(3)在(1)(2)的條件下,點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC-AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.E是BC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過(guò)點(diǎn)D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個(gè)檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤(rùn)6元.每提高一個(gè)檔次,每件利潤(rùn)增加2元,但一天產(chǎn)量減少5件.
(1)若生產(chǎn)第檔次的產(chǎn)品一天的總利潤(rùn)為元(其中為正整數(shù),且1≤≤10),求出關(guān)于的函數(shù)關(guān)系式;
(2)若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤(rùn)為1120元,求該產(chǎn)品的質(zhì)量檔次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E是AD上的一點(diǎn),且AE=AD,對(duì)角線AC,BD交于點(diǎn)O,EC交BD于F,BE交AC于G,如果平行四邊形ABCD的面積為S,那么,△GEF的面積為( )
A. S B. S C. S D. S
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備購(gòu)買A、B兩種型號(hào)籃球,詢問(wèn)了甲、乙兩間學(xué)校了解這兩款籃球的價(jià)格,下表是甲、乙兩間學(xué)校購(gòu)買A、B兩種型號(hào)籃球的情況:
購(gòu)買學(xué)校 | 購(gòu)買型號(hào)及數(shù)量(個(gè)) | 購(gòu)買支出款項(xiàng)(元) | |
A | B | ||
甲 | 3 | 8 | 622 |
乙 | 5 | 4 | 402 |
(1)求A、B兩種型號(hào)的籃球的銷售單價(jià);
(2)若該學(xué)校準(zhǔn)備用不多于1000元的金額購(gòu)買這兩種型號(hào)的籃球共20個(gè),求A種型號(hào)的籃球最少能采購(gòu)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長(zhǎng)線上一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com