【題目】解下面各題
(1)解方程:x2﹣4x﹣12=0;
(2)解不等式組: .
【答案】
(1)解:(x﹣6)(x+2)=0,
x﹣6=0或x+2=0,
所以x1=6,x2=﹣2;
(2)解:
解①得x≥﹣1,
解②得x<4,
所以不等式組的解集是﹣1≤x<4.
【解析】(1)利用因式分解法解方程;(2)分別解兩個(gè)不等式得到x≥﹣1和x<4,然后根據(jù)大小小大中間找確定不等式組的解集.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的解法的相關(guān)知識(shí)點(diǎn),需要掌握解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒(méi)有公共部分,則這個(gè)不等式組無(wú)解 ( 此時(shí)也稱(chēng)這個(gè)不等式組的解集為空集 )才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過(guò)程,請(qǐng)?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(0,n),以點(diǎn)B為直角頂點(diǎn),點(diǎn)C在第二象限內(nèi),作等腰直角△ABC.則點(diǎn)C的坐標(biāo)是_____(用字母n表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長(zhǎng),交直線(xiàn)l于點(diǎn)C,使得AB=AC.
(1)求證:AB是⊙O的切線(xiàn);
(2)PC=2 ,OA=4. ①求⊙O的半徑;
②求線(xiàn)段PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2)…按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2015次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分別為垂足,則下列四個(gè)結(jié)論:①∠DEF=∠DFE; ②AE=AF; ③AD平分∠EDF; ④AD垂直平分EF.其中正確結(jié)論有()
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是射線(xiàn)CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線(xiàn)段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;
(2)設(shè)∠BAC= ,∠DCE= .
① 如圖2,當(dāng)點(diǎn)D在線(xiàn)段CB上,∠BAC≠90°時(shí),請(qǐng)你探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論;
② 如圖3,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫(xiě)出此時(shí)與之間的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線(xiàn)AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說(shuō)明理由;
(2)如圖2,將△ACD沿線(xiàn)段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“數(shù)形結(jié)合"是一種重要的數(shù)學(xué)思想,觀(guān)察下面的圖形和算式.
解答下列問(wèn)題:
(1)試猜想1+3+5+7+9+…+19=______=( );
(2)試猜想,當(dāng)n是正整數(shù)時(shí),1+3+5+7+9+…+(2n-1)= ;
(3)請(qǐng)用(2)中得到的規(guī)律計(jì)算:19+21+23+25+27+…+99.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com