【題目】已知:AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.
(1)求證:DE為⊙O的切線;
(2)連接BE交圓于F,連AF并延長ED于G,若GE=2,AF=3,求∠EAF的度數(shù).
【答案】(1)詳見解析;(2)∠EAF的度數(shù)為30°.
【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;
(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到,于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAG的度數(shù)即可.
(1)證明:連接OD,如圖,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE為⊙O的切線;
(2)∵AB為直徑,
∴∠AFB=90°,
∵∠EGF=∠AGF,
∴Rt△GEF∽△Rt△GAE,
∴,即,
整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
在Rt△AEG中,sin∠EAG=,
∴∠EAG=30°,
即∠EAF的度數(shù)為30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)若AB=4,∠ABP=60°,求PB的長;
(2)若CD是⊙O的切線.求證:D是AP的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y﹣2與x成正比例,當(dāng)x=2時,y=6.
(1)求y與x之間的函數(shù)解析式.
(2)在所給直角坐標(biāo)系中畫出函數(shù)圖象.
(3)由函數(shù)圖象直接寫出當(dāng)﹣2≤y≤2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點D,且D在以A為直徑的⊙O上.
(1)求證:BC是⊙O的切線;
(2)若DC=4,AC=6,求圓心O到AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,AB是⊙O的直徑,作EG⊥AB于H,交BC于F,延長GE交直線MC于D,且∠MCA=∠B,求證:
(1)MC是⊙O的切線;
(2)△DCF是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC是⊙O的直徑,點D是BC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么△ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出當(dāng)x>0時不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格中單位長度為1的小正方形的頂點叫格點,點和點是格點,位置如圖:
(1)線段的長是______________;
(2)在圖1中確定格點,使為直角三角形,畫出一個這樣的;
(3)在圖2中確定格點,使為等腰三角形,畫出一個這樣的;
(4)在圖2中滿足題(3)條件的格點共有___________個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com