【題目】定義:同時(shí)經(jīng)過(guò)x軸上兩點(diǎn)A,B(m≠n)的兩條拋物線稱為同弦拋物線.如拋物線C1:與拋物線C2:是都經(jīng)過(guò),的同弦拋物線.
(1)引進(jìn)一個(gè)字母,表達(dá)出拋物線C1的所有同弦拋物線;
(2)判斷拋物線C3:與拋物線C1是否為同弦拋物線,并說(shuō)明理由;
(3)已知拋物線C4是C1的同弦拋物線,且過(guò)點(diǎn),求拋物線C對(duì)應(yīng)函數(shù)的最大值或最小值.
【答案】(1):;(2)不是,理由見(jiàn)解析;(3)拋物線有最小值為﹣.
【解析】
(1)拋物線的表達(dá)式為:y=a(x﹣1)(x﹣3)(a≠0且a≠1);
(2)y=(x2﹣3x+2)= (x﹣1)(x﹣2),拋物線與x軸的交點(diǎn)為:(1,0)、(2,0),即可求解;
(3)C4是C1的同弦拋物線,設(shè)其拋物線的表達(dá)式為:y=a(x﹣1)(x﹣3)(a≠0且a≠1),把點(diǎn)(4,5)代入上式并解得:a=,即可求解.
(1)拋物線的表達(dá)式為:y=a(x﹣1)(x﹣3)(a≠0且a≠1);
(2)不是,
理由是:
y=(x2﹣3x+2)=(x﹣1)(x﹣2),
拋物線與x軸的交點(diǎn)為:(1,0)、(2,0);
∴C3與拋物線C1不是同弦拋物線;
(3)C4是C1的同弦拋物線,設(shè)其拋物線的表達(dá)式為:y=a(x﹣1)(x﹣3)(a≠0且a≠1);
把點(diǎn)(4,5)代入上式并解得:a=,
故拋物線表達(dá)式為:y=(x﹣1)(x﹣3)=(x﹣2)2﹣,
∵a=>0,故拋物線有最小值為:﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=10,以AB為直徑作半圓O,半徑OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到OC,點(diǎn)A的對(duì)應(yīng)點(diǎn)為C,當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止.連接BC并延長(zhǎng)到點(diǎn)D,使得CD=BC,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,連接AD,AC.
(1)AD= ;
(2)如圖1,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),判斷△ABD的形狀,并說(shuō)明理由;
(3)如圖2,當(dāng)OE=1時(shí),求BC的長(zhǎng);
(4)如圖3,若點(diǎn)P是線段AD上一點(diǎn),連接PC,當(dāng)PC與半圓O相切時(shí),直接寫出直線PC與AD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司開(kāi)發(fā)一種新的節(jié)能產(chǎn)品,工作人員對(duì)銷售情況進(jìn)行了調(diào)查,圖中折線表示月銷售量(件)與銷售時(shí)間(天)之間的函數(shù)關(guān)系,已知線段表示函數(shù)關(guān)系中,時(shí)間每增加天,月銷售量減少件,求與間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的頂點(diǎn)A,D在直線l上,∠BAD=60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對(duì)角線AC于點(diǎn)M,C′D′交直線l于點(diǎn)N,連接MN,當(dāng)MN∥B′D′ 時(shí),解答下列問(wèn)題:
(1)求證:△AB′M≌△AD′N;
(2)求α的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,把它內(nèi)部及邊上的橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),點(diǎn)P為拋物線的頂點(diǎn)(m為整數(shù)),當(dāng)點(diǎn)P在正方形OABC內(nèi)部或邊上時(shí),拋物線下方(包括邊界)的整點(diǎn)最少有( )
A.3個(gè)B.5個(gè)C.10個(gè)D.15個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在⊙O中,弦AB與CD相交于點(diǎn)F,∠BCD=68°,∠CFA=108°,求∠ADC的度數(shù).
(2)如圖2,在正方形ABCD中,點(diǎn)E是CD上一點(diǎn)(DE>CE),連接AE,并過(guò)點(diǎn)E作AE的垂線交BC于點(diǎn)F,若AB=9,BF=7,求DE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=x2﹣4x+3圖象與x軸分別交于點(diǎn)B、D,與y軸交于點(diǎn)C,頂點(diǎn)為A,分別連接AB,BC,CD,DA.
(1)求四邊形ABCD的面積;
(2)當(dāng)y>0時(shí),自變量x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,點(diǎn)E在邊上,將點(diǎn)E繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)得到點(diǎn)F,若點(diǎn)F恰好落在邊的延長(zhǎng)線上,連接,,.
(1)判斷的形狀,并說(shuō)明理由;
(2)若,則的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小華同學(xué)設(shè)計(jì)的“作三角形的高線”的尺規(guī)作圖的過(guò)程.
已知:如圖1,△ABC.
求作:AB邊上的高線.
作法:如圖2,
①分別以A,C為圓心,大于長(zhǎng)
為半徑作弧,兩弧分別交于點(diǎn)D,E;
② 作直線DE,交AC于點(diǎn)F;
③ 以點(diǎn)F為圓心,FA長(zhǎng)為半徑作圓,交AB的延長(zhǎng)線于點(diǎn)M;
④ 連接CM.
則CM 為所求AB邊上的高線.
根據(jù)上述作圖過(guò)程,回答問(wèn)題:
(1)用直尺和圓規(guī),補(bǔ)全圖2中的圖形;
(2)完成下面的證明:
證明:連接DA,DC,EA,EC,
∵由作圖可知DA=DC =EA=EC,
∴DE是線段AC的垂直平分線.
∴FA=FC .
∴AC是⊙F的直徑.
∴∠AMC=______°(___________________________________)(填依據(jù)),
∴CM⊥AB.
即CM就是AB邊上的高線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com