【題目】如圖,菱形ABCD的頂點(diǎn)A,D在直線l上,∠BAD=60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點(diǎn)M,C′D′交直線l于點(diǎn)N,連接MN,當(dāng)MN∥B′D′ 時,解答下列問題:
(1)求證:△AB′M≌△AD′N;
(2)求α的大小.
【答案】(1)見解析;(2)α=15°
【解析】
(1)利用四邊形AB′C′D′是菱形,得到AB′=B′C′=C′D′=AD′,根據(jù)∠B′AD′=∠B′C′D′=60°,可得△AB′D′,△B′C′D′是等邊三角形,進(jìn)而得到△C′MN是等邊三角形,則有C′M=C′N,MB′=ND′,利用SAS即可證明△AB′M≌△AD′N;
(2)由(1)得∠B′AM=∠D′AN,利用∠CAD=∠BAD=30°,即可解決問題.
(1)∵四邊形AB′C′D′是菱形,
∴AB′=B′C′=C′D′=AD′,
∵∠B′AD′=∠B′C′D′=60°,
∴△AB′D′,△B′C′D′是等邊三角形,
∵MN∥B′C′,
∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,
∴△C′MN是等邊三角形,
∴C′M=C′N,
∴MB′=ND′,
∵∠AB′M=∠AD′N=120°,AB′=AD′,
∴△AB′M≌△AD′N(SAS),
(2)由△AB′M≌△AD′N得:∠B′AM=∠D′AN,
∵∠CAD=∠BAD=30°,
∴∠D′AN=∠B′AM=15°,
∴α=15°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸、y軸分別相交于點(diǎn)A,B,點(diǎn)C在射線OA上,點(diǎn)D在射線OB上,且OD=2OC,以CD的中點(diǎn)為對稱中心作△COD的對稱圖形△DEC.設(shè)點(diǎn)C的坐標(biāo)為(0,n),△DEC在直線AB下方部分的面積為S.
(1)當(dāng)點(diǎn)E在AB上時,n= ,當(dāng)點(diǎn)D與點(diǎn)B重合時,n= ;
(2)求S關(guān)于n的函數(shù)解析式,并直接寫出自變量n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為平面直角坐標(biāo)系中不重合的兩點(diǎn),以點(diǎn)為圓心且經(jīng)過點(diǎn)作,則稱點(diǎn)為的“關(guān)聯(lián)點(diǎn)”, 為點(diǎn)的“關(guān)聯(lián)圓”.
(1)已知的半徑為1,在點(diǎn)中,的“關(guān)聯(lián)點(diǎn)”為____________(填寫字母);
(2)若點(diǎn),點(diǎn),為點(diǎn)的“關(guān)聯(lián)圓”,且的半徑為,求的值;
(3)已知點(diǎn),點(diǎn),是點(diǎn)的“關(guān)聯(lián)圓”,直線與軸,軸分別交于點(diǎn)。若線段上存在的“關(guān)聯(lián)點(diǎn)”,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 隨機(jī)拋擲一枚均勻的硬幣,落地后反面一定朝上。
B. 從1,2,3,4,5中隨機(jī)取一個數(shù),取得奇數(shù)的可能性較大。
C. 某彩票中獎率為,說明買100張彩票,有36張中獎。
D. 打開電視,中央一套正在播放新聞聯(lián)播。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.點(diǎn)E從點(diǎn)A出發(fā),沿AC以每秒1個單位長度的速度向終點(diǎn)C運(yùn)動:點(diǎn)D從點(diǎn)C出發(fā),沿C一B一A以每秒2個單位長度的速度向終點(diǎn)A運(yùn)動,當(dāng)點(diǎn)E停止運(yùn)動時,點(diǎn)D隨之停止,點(diǎn)E、D同時出發(fā),設(shè)點(diǎn)E的運(yùn)動時間為t(秒)
(1)用含t的代數(shù)式表示CE的長;
(2)設(shè)點(diǎn)D到CA的距離為h,用含t的代數(shù)式表示h;
(3)設(shè)△CDE的面積為S(平方單位),求S(平方單位)與t(秒)的函數(shù)關(guān)系式;
(4)當(dāng)DE與△ABC的邊平行或垂直時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3) 拋物線對稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學(xué)問題,如圖2.已知鐵環(huán)的半徑為25 cm,設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點(diǎn)為M,鐵環(huán)與地面接觸點(diǎn)為A,∠MOA=α,且sinα=.
(1)求點(diǎn)M離地面AC的高度BM;
(2)設(shè)人站立點(diǎn)C與點(diǎn)A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,G為△ABC紙片的重心,DG∥AC交BC于點(diǎn)D,連結(jié)BG,剪去△BGD紙片,剩余部分紙片如圖2所示,若原△ABC紙片面積為5,則圖2紙片的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點(diǎn)O,∠ACB的平分線分別交AB、BD于M、N兩點(diǎn).若AM=,則線段BN的長為( )
A.1B.C.2D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com