【題目】如圖1,G為△ABC紙片的重心,DG∥AC交BC于點D,連結(jié)BG,剪去△BGD紙片,剩余部分紙片如圖2所示,若原△ABC紙片面積為5,則圖2紙片的面積為_____.
【答案】.
【解析】
連接AG,延長AG交BD于E,設(shè)△DGE的面積為S,利用重心的性質(zhì)和平行線分線段成比例,用S表示其它三角形的面積,最后得出S△ABC =18S=5,解得S,可得S△BDG=4S,即可得圖2紙片的面積=5.
連接AG,延長AG交BD于E,如圖1,設(shè)△DGE的面積為S,
∵G為△ABC紙片的重心,
∴BE=CE,AG=2EG,
∵DG∥AC,
∴ED:DC=EG:AG=1:2,
∴S△DGC=2S△DEG=2S,
∴S△BEG=S△CEG=3S,
∴S△ABG=2S△BEG=6S,
∵S△ABE=3S+6S=9S,
∴S△ABC=2S△ABE=18S,
即18S=5,解得S,
∴S△BDG=4S,
∴圖2紙片的面積=5.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行八百米跑體能測試,測試結(jié)果分為A、B、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)求本次測試共調(diào)查了多少名學(xué)生?
(2)求本次測試結(jié)果為B等級的學(xué)生數(shù),并補全條形統(tǒng)計圖;
(3)若該中學(xué)八年級共有900名學(xué)生,請你估計八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當MN∥B′D′ 時,解答下列問題:
(1)求證:△AB′M≌△AD′N;
(2)求α的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小輝和小聰兩人在玩轉(zhuǎn)盤游戲時,把一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A成3等份的扇形區(qū)域,把轉(zhuǎn)盤B成2等份的扇形區(qū)域,并在每一小區(qū)內(nèi)標上數(shù)字(如圖所示),游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當兩轉(zhuǎn)盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為2的倍數(shù)時,則小輝獲勝;若指針所指兩個區(qū)域的數(shù)字之和為3的倍數(shù)時,則小聰獲勝;如果指針落在分割線上,則需重新轉(zhuǎn)動轉(zhuǎn)盤.在這個游戲中,小輝和小聰兩人獲勝的概率分別為多少?該游戲規(guī)則對雙方公平嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線L上有A、B兩個觀測點,A在B的正東方向,AB=2km.有一艘小船在點P處,從A處測得小船在北偏西60°的方向,從B處測得小船在北偏東45°方向.
(1)求P點到海岸線l的距離.
(2)小船從點P處沿射線AP的方向繼續(xù)行駛,求小船到B處的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=6,AD=8將矩形ABCD沿直線MN翻折后,點B恰好落在邊AD上的點E處,如果AE=2AM,那么CN的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長與面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com